On Lie Differentiability Conditions of Some Polynomial Structures in Semi Tangent Bundle
Şu kitabın bölümü: Gürbüz, F. (ed.) 2024. Matematik ve Fen Bilimlerinde Güncel Yaklaşımlar.

Kürşat Akbulut
Atatürk Üniversitesi
Furkan Yıldırım
Atatürk Üniversitesi
İmran Güneş
Atatürk Üniversitesi

Özet

In popular differential geometry, the tensor structures on smooth manifolds are remarkable geometric objects. In reality, every tensor structure is a polynomial structure. A tensor field f of type (1,1) on a differentiable manifold is called a polynomial structure if it satisfies the algebraic equation ( 1) 11.... f n + a1 f (n+1) + …. + an-1 f + anI = 0, where I is the identity tensor of type (1,1) and a1,a2,...,an are real numbers. The Lie differentiability conditions of some polynomial structures (almost contact and almost paracontact structures) in semi-tangent bundle t(M) are examined in this study.

Kaynakça Gösterimi

Akbulut, K. & Yıldırım, F. & Güneş, İ. (2024). On Lie Differentiability Conditions of Some Polynomial Structures in Semi Tangent Bundle. In: Gürbüz, F. (ed.), Matematik ve Fen Bilimlerinde Güncel Yaklaşımlar. Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub568.c2316

Lisans

Yayın Tarihi

22 December 2024

DOI