Bi-Rads Classification in Mammography using Deep Learning
Şu kitabın bölümü: Akoğul, S. & Tuna, E. (eds.) 2024. Güncel Ekonometrik ve İstatistiksel Uygulamalar ile Akademik Çalışmalar.

Arda Tekin
İstanbul Kültür Üniversitesi
Boran Toktay
İstanbul Kültür Üniversitesi
Ahmet Can Günay
İstanbul Kültür Üniversitesi
Harun Yazgan
İstanbul Kültür Üniversitesi
Neslihan G. İnan
Koç Üniversitesi
Ozan Kocadağlı
Mimar Sinan Güzel Sanatlar Üniversitesi

Özet

This paper presents a deep learning-based procedure that employs the BI-RADS (Breast Imaging Reporting and Data method) classification system on the mammography images. The proposed procedure has the potential to make breast cancer identification and diagnosis more precisely and provide a decision support system for the radiologists. Using RSNA and Vindir mammogram datasets, BI-RADS classification models were estimated by InceptionResNetV2 architectures where they achieved 91% precision and 80% F1-score for BI-RADS 0 classification. Specifically, our proposed comprehensive preprocessing pipeline consists of image cropping, gray thresholding and histogram equalization to enhance the feature visibility and model performance significantly. The findings obtained from analysis results show that deep learning based InceptionResNetV2 architecture achieved 91% precision for BI-RADS classification. Also, our findings contribute to the literature on AI-based medical imaging in terms of addressing important issues in the preprocessing of medical images and enhancing the performance of deep neural networks. As a result, these findings show that deep learning might help the experts for the clinical decision-making in breast cancer diagnosis and provide a decision support system.

Kaynakça Gösterimi

Tekin, A. & Toktay, B. & Günay, A. C. & Yazgan, H. & İnan, N. G. & Kocadağlı, O. (2024). Bi-Rads Classification in Mammography using Deep Learning. In: Akoğul, S. & Tuna, E. (eds.), Güncel Ekonometrik ve İstatistiksel Uygulamalar ile Akademik Çalışmalar. Özgür Yayınları. DOI: https://doi.org/10.58830/ozgur.pub518.c2134

Lisans

Yayın Tarihi

26 November 2024

DOI

Kategoriler