
127

Chapter 9

Algorithm Design In Programming Language
Education

Tuğba Saray Çetinkaya1

Ali Çetinkaya2

Abstract

The field of algorithm development on computer systems continues to grow
in importance in today’s world, highlighting the critical nature of algorithm
design and implementation. With the increasing diversity of algorithm use
cases, it is essential to emphasize the significance of proper algorithm design
methods for each problem. As such, the design of new and effective algorithms
is of paramount importance to the continued growth and innovation of
computer systems. Algorithms play a crucial role in solving problems within
established systems. Therefore, it is important to detail the appropriate
algorithm methods for each problem. As the areas of algorithm use become
more diverse, the programming languages used in these platforms also change.

This study aims to help learners understand the steps to take when designing
algorithms and learning programming languages, regardless of the language
used. Common algorithm designs are demonstrated on Python, C, C++, and
C# programming languages. These designs cover shared concepts across all
four languages and will aid in coding on these programming languages. The
goal is to learn and apply algorithm design on multiple programming languages.

This study covers the basics of algorithms, programming, programming
concepts, and the fundamentals of computer programming. It is essential
to understand these topics in programming language education in order to
correctly and error-free install algorithms, helping newcomers to the software
industry take the correct steps.

1 Lecturer, Istanbul Gelisim University, Istanbul Gelisim Vocational High School, Department
of Computer Technologies, Information Security Technology Program, ORCID: 0000-0003-
1639-553X

2 Lecturer, Istanbul Gelisim University, Istanbul Gelisim Vocational High School, Department
of Electronics and Automation, Electronic Technology Program, ORCID ID: 0000-0003-
4535-3953

https://doi.org/10.58830/ozgur.pub95.c444

128 | Algorithm Design in Programming Language Education

1. INTRODUCTION

Nowadays, when algorithms are combined with programming languages,
great technological works are emerging. Examples of these works continue
to differentiate and increase in military and police systems, agricultural
applications, image processing applications, data engineering field, language
processing works, and cyber security applications. With the differentiation
of the areas of use of algorithms, the programming languages used on these
platforms are also changing.

Python is an object-oriented and functional modern programming
language. It is ideal for beginners due to its readability and ease of use. C#
is a simple, modern, object-oriented, and type-safe programming language
that combines the high productivity of application development languages
with the raw power of C and C++. The Java programming language, on the
other hand, shares many features that are common to most programming
languages used today. Since it is designed with the structures of C and C++,
where their languages are similar, the language is familiar to C and C++
programmers (Lerdorf, 2002; Hejlsberg, 2003; Arnold, 2005; Deitel, 2004;
Kelly, 2016; Gavrilović, 2018; Pala, 2019; Chollet, 2021; Chen, 2023).

Nowadays, the use of computer systems in all sectors has increased. The
analysis, design, development, application, and testing of the capabilities
required by these systems are important for algorithms and software
(Alaybeyoğlu, 2006; Özyurt, 2016; Akkaya, 2020; Shnaider, 2023). In
the problems solved in systems established with algorithms on integrated
systems, it is necessary to determine the algorithm method to be applied to
the subject. In addition, determining the method to be used on this algorithm
application is also of great importance in terms of integrity in the application.
No matter how good the scope or evaluation of the mathematical models
in the designed applications is, uncertainties may arise during the operation
of the system. In this context, when any uncertain situation is encountered,
linguistic variables and functions that best meet human thoughts should be
created on the algorithm of the system.

In this chapter of this book, we will progress by learning and applying
algorithm design with multiple programming languages and their concepts
through C, C++, C#, and Python programming languages.

What will we learn?

 • We will learn the basics of algorithms and algorithm logic,

 • We will recognize the concept of flowchart,

Tuğba Saray Çetinkaya / Ali Çetinkaya | 129

 • We will process the basics of programming with C and develop
algorithms,

 • We will process the basics of programming with C++ and develop
algorithms,

 • We will process the basics of programming with C# and develop
algorithms,

 • We will process the basics of programming with Python and develop
algorithms,

In the following sections, we will detail our explanations and applications
on what an algorithm is, what programming is, what the basic concepts of
programming are, and what computer programming covers.

2. WHAT IS AN ALGORITHM?

All of the sequential logical steps required to solve a problem or solve
a problem for a specific purpose are called “algorithms”. An algorithm
constitutes the entire path to be followed within the scope of the solution of
a problem. In short, an algorithm is a method of creating the desired output
information based on the information we have. The most important task of
an algorithm related to any problem is that it can create steps for solving the
problem.

Performing the coding of the algorithm to be prepared for a problem
in any programming language is the simple part of the job. When writing
the expression form of an algorithm textually, it is written step by step as
a textual pseudo code for the problem to be solved, each line that occurs
is numbered, and should start with ‘start’ and end with ‘end’. There are
five expectations that should be considered when working on algorithms in
C, C++, C#, or Python programming languages. These expectations are
effectiveness, finiteness, definiteness, input/output, and success/performance
measurement. Our answer to the question of what to expect from algorithms
should be within the scope of the following explanations:

1) Effectiveness: Each step of the designed algorithm should be expressed
in an understandable, simple, and precise way. Endless loops should not be
entered by creating unnecessary repetitions on the algorithm.

2) Finiteness: Each algorithm must have a starting point and an end point.

3) Definiteness: In order to reach the result information within the scope
of the algorithm’s task, the input information must be compatible at each
step and give the same result when it is newly executed.

130 | Algorithm Design in Programming Language Education

4) Input/Output: It should have the result values that will be formed as a
result of the operations to be performed on the algorithm.

5) Success/Performance: Algorithms that give different results in each
application should be avoided. Even if the system seems to be working, the
success rate may be low. At this point, the development of “high-performance
algorithms” should be our goal.

3. WHAT IS PROGRAMMING?

In the field of education and training, big data analysis, cloud
technologies, and wearable technologies have recently increased their impact
(Turk, 2018). The tools that enable software production are programming
languages, and algorithms constitute the most basic of these (Namlı, 2017).
In programming teaching, algorithm design has a special place in defining
the problem to be solved. In this context, how programmer candidates
perceive the algorithm becomes important (Gökoğlu, 2017). An algorithm
is a way where how to solve a problem or achieve a determined goal is
explained. As can be understood from this statement, an algorithm is not a
result, but a tool that leads to a result (Aytekin, 2018).

In the literature studies on programming, research has been conducted
on preschool, kindergarten, primary school, secondary school, high
school, university, and higher education (Yukselturk, 2016; Yalçınkaya,
2018; Karaman, 2019; Deniz, 2019; Kaban, 2021; Bayraktar, 2021). The
importance of programming education in the development of cognitive
skills of students has been emphasized (Akçay, 2016). Scientific studies
conducted in Turkey on coding education in the preschool period have
been systematically examined, and in this context, it has been stated that
algorithms are an advantage in problem-solving in the coding process
(Zurnacı, 2022). In a study, Özdener (2008) focused on how vocational
high school and university students interpreted algorithms related to time
efficiency in structured computer programming. In another study, it was
aimed to determine the effect of secondary students’ attitudes towards
computers and their self-directed learning skill levels on their success in
programming language teaching (Alper, 2019). In the field of education,
the inability to teach software languages is due to the complexity of the
courses and the inability to comprehend the integrity of the subject (Ozoran,
2012). For programming students to learn a software language, adopting
C and Python programming languages in “introduction to programming”
courses is necessary (Balreira, 2023). Data structures can be used for the
classification of algorithms on Java and C++ programming languages (Bui,

Tuğba Saray Çetinkaya / Ali Çetinkaya | 131

2019). An educational study developed using the artificial neural network
from the sub-branches of artificial intelligence was carried out using the
C#.NET programming language (Çevik, 2012).

Program (software): It can be defined as a series of statements written
using a computer programming language to solve a specific problem. The
statements to be used in programming languages are control and loop
expressions. “If/if, else/else” and “switch/case”, which have common usage
in programming languages, are used as control expressions, while “while”,
“do/while” and “for” are used as loop expressions.

Loop expressions used in programming languages are: while, do/while,
for, foreach, range and len/in. The loop expressions used in the C and C++
programming languages are while, do/while, and for. The loop expressions
used in the C# programming language are while, do-while, for, and foreach.
The loop expressions used in the Python programming language are while,
for, range, and len/in. The loop expressions used in the Java programming
language are while, do-while, and for. The control expressions used in the
C, C++, C# and Python programming languages are: if, if/else, “if/else if
/.... /else” and switch/case. However, there are no “switch/case” and “do/
while” structures directly in the Python programming language. In Table
14, the “switch/case” structure is given by creating a function for the Python
programming language. In Table 17, the “do/while” structure is given by
creating a function for the Python programming language.

4. WHAT IS COMPUTER PROGRAMMING?

The steps that we will follow respectively in writing a program (software)
that we will develop to solve the problem by using an algorithm on a
computer are as follows: understanding what the problem is, determining
the requirements for the solution, determining the input-output and
operations of the problem, writing the algorithm that solves the problem,
writing the algorithm in a programming language, and testing the accuracy
of the program. To understand what the problem is and solve the problem,
answers to 3 questions are sought. The first of these questions is “what
is necessary”, the second is “how to produce solutions”, and the third is
“what are the current situations”. Detailed analyses should be carried out
before operations are performed on the algorithms. These analyses include:
determining the data to be used or input-output definitions, determining
the equations and formulas to be used when developing the algorithm,
developing an algorithm (pseudo codes and flowcharts), writing a program
in a programming language by using the algorithm, demonstrating

132 | Algorithm Design in Programming Language Education

accuracy and verification (determining whether the program meets the
user’s requirements), removing undetected errors, and preparing program
documentation.

Relational and logical operators are used when running programs
by utilizing comparison commands depending on the characteristics of
the program. Programs (software) consist of many commands that run
respectively. The commands used to control the program blocks which are
requested to be executed or not to be executed based on certain conditions in
programs are called “control commands”. These commands are considered
as operator precedence, mathematical operation operators, logical expression
representation, logical operators, the equivalent of a mathematical expression
in a programming language, representative examples and coding of logical
operators, a sample table of logical operations, increment-decrement
operators, and the expression for the use of increment-decrement operators
in a programming language. The operators and operations used as standard
in the C, C#, Python, and C++ programming languages are given between
Table 1 and Table 9.

Table 1. Operator Precedence (Order of Operations)

Operator Precedence The Relevant Operator or Operators

1st order (first operation priority) * / %

2nd order + -

3rd order << >>

4th order < > <= >=

5th order == !=

6th order &

7th order ^

8th order |

9th order &&

10th order ||

11th order ?:

12th order (last operation priority) =

The related mathematical operation operators are shown, and their
explanations are given in Table 2.

Tuğba Saray Çetinkaya / Ali Çetinkaya | 133

Table 2. Mathematical Operation Operators

Math Operators Explanation of the Operator

* Operator for the multiplication process

/ Operator for the division process

+ Operator for the addition process

- Operator for the subtraction process

% Operator for the mod process

Table 3. Logical Expressions

Logical Expression Explanation of the Logical Expression

= the operator for the “assignment” expression

== the operator for the “equivalence” expression

> the operator for the “greater than” expression

< the operator for the “less than” expression

>= the operator for the “Greater than or equal to” expression

<= the operator for the “less than or equal to” expression

&& the operator for the logical “AND” expression

|| the operator for the logical “OR” expression

! the operator for the logical “NOT” expression

!= the operator for the “not equal” expression

^ the operator for the “exclusive OR” expression

Table 3 shows the relevant logical expressions and their explanations. The
use and representation of these expressions as operators are given in Table 4.
On Table 4, the AND (&&) operator works with the result True (1) if both
logical expressions are true, otherwise it works with the result False (0). The
Or (||) operator works with the result True (1) if any of the logical expressions
are true, otherwise, it works with False (0). The NOT (!) operator takes the
“not” (that is, inverse) of the logical expression. If the expression is True
(1), it works with the result False (0), if False (0), then it works with the result
True (1). The exclusive OR (^) operator works with the result True (1) if
any of the logical expressions is different from the other, otherwise (that is, if
they are both the same), it works with the result False (0).

134 | Algorithm Design in Programming Language Education

Table 4. Logical Operators

AND
OPERATION

(AND)

OR OPERATION
(OR)

EXCLUSIVE OR
(XOR)

NOT
OPERATION

(NOT)

THE TABLE FOR
“AND” GATE

THE TABLE FOR
“OR” GATE

THE TABLE FOR
“EXCLUSIVE OR”

GATE

THE TABLE FOR
“NOT” GATE

A B Q
0 0 0

0 1 0
1 0 0
1 1 1

A B Q
0 0 0

0 1 1
1 0 1
1 1 1

A B Q
0 0 0

0 1 1
1 0 1
1 1 0

A Q
0 1

1 0

Table 5. The Equivalences of Mathematical Expressions on the Programming Language

Mathematical Expression The Equivalent of the Operation in the
C Programming Language

The operation that gives the sum of 5 and
2

variable = 5 + 2;

Multiplying the number 2 with the
parameter a

variable = a * 2;

Obtaining the remaining number (mod)
from the division of 7 with 3

mod = 7%3;

The operation that summit 5 and 4 first,
multiplies the output value by 9, and

divides the result of the operation by 2

A=((5+4)*9)/2;

s = 2*x / (a+b);

f=a*x-(b+c);

f=1 / (1+(1/n));

Tuğba Saray Çetinkaya / Ali Çetinkaya | 135

The equivalences of some mathematical expressions in the programming
language are presented in Table 5. Representative examples and codings of
logical operators are given in Table 6.

Table 6. Representative Examples and Codings of Logical Operators

Operation Operator Sign
Representative

Example
Representative

Coding

Logical AND && (A<B) AND
(B<C)

(A<B) && (B<C)

Logical OR || (A<B) OR (B<C) (A<B) || (B<C)

NOT ! NOT(A<B) !(A<B)

Exclusive OR
(EXOR)

^ (A XOR B) (A^B)

Table 7 shows the output information generated as a result of the logical
operations applied based on the input operations on the algorithms.

Table 7. Example Table of Logical Operations

X Y !X !Y X && Y X || Y X ^ Y

0 0 1 1 0 0 0

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 1 0

In Tables 8 and 9, the increment and decrement operators are shown and
their use in programming languages is given. In addition, different uses and
explanations of increment and decrement operators on algorithms are given
in Table 9.

Table 8. Increment and Decrement Operators

Increment Operators Decrement Operators

++ --

136 | Algorithm Design in Programming Language Education

Table 9. The Use of Increment and Decrement Operators on a Programming Language

Example operation
Statement

Explanation

++a Increase “a” by one, and use the new value of “a” in the
statement in which “a” is located.

a++ Use the value of “a” in the statement in which “a” is located,
and then increase the value of “a” by one.

--a Decrease “a” by one, and use the new value of “a” in the
statement in which “a” is located.

a-- Use the value of “a” in the statement in which “a” is located,
and then decrease the value of “a” by one.

5. THE USE OF FLOWCHARTS IN ALGORITHM DESIGN

An algorithm is a cluster of instructions arranged in a specific logical
order that produces a solution for a specific problem when it is executed.
When creating this cluster, we use two techniques: Pseudo Code and
Flowchart. These two concepts are the techniques used when creating and
defining algorithms. Pseudo Code is a language consisting of limited words
and is similar to programming language. A flowchart, on the other hand,
is a graphical demonstration of an algorithm with geometric shapes. The
representation of the algorithm is revealed by the flow lines connecting these
shapes.

Table 10 shows the flowchart elements used when creating algorithms.
The ellipse shows the starting and ending places of a flowchart. The
parallelogram is used to show the data entry points on a flowchart. The
rhombus represents the decision-making processes on the flowchart. The
rectangle shows the arithmetic operations in the flowchart. The arrows
indicate the directions in which the process steps will go on a flowchart. The
cylinder represents the database process on the flowchart. The document
represents the information output process on the flowchart.

Tuğba Saray Çetinkaya / Ali Çetinkaya | 137

Table 10. Flowchart Symbols

Symbol Symbol Name Meaning

Ellipse It shows the starting and ending
places of a flowcharts.

Parallelogram It is used to show the data entry
points on a flowchart

Rhombus It represents the decision-making
processes on a flowchart

Rectangle It shows the arithmetic operations in
a flowchart.

Arrows It indicate the directions in which
the process steps will go on a

flowchart.

Cylinder It represents the database process on
a flowchart.

Document It represents the information output
process on a flowchart.

138 | Algorithm Design in Programming Language Education

6. ALGORITHM OPERATIONS ON PROGRAMMING
LANGUAGES

Figure 1. The Flowchart of the “if ” Control Block in Programming

Table 11. Code Representation of the “if ” Loop on Different Programming Languages

if (condition)
{
 commands();
}

if condition:

 commands()

Code Representation of the “if ” Control
Block in the C Programming Language

Code Representation of the “if ” Control
Block in the Python Programming

Language

if (condition)
{
 commands();
}

if (condition)
{
 commands();
}

Code Representation of the “if ” Control
Block in the C++ Programming

Language

Code Representation of the “if ” Control
Block in the C# Programming Language

Tuğba Saray Çetinkaya / Ali Çetinkaya | 139

The “if ” command, which is represented as a control block in Figure 1
and Table 11, is a conditional operation command. Depending on whether
a certain condition is correct, it is ensured that a line of commands or a
code block is executed. The comparison process is performed at the time
of operation. The Boolean (true/false) value is returned depending on the
control result of the expression that comes after the “if ” command. This
Boolean value is considered as “TRUE” if the operation is correct and as
“FALSE” if the operation is false. If the result of the related condition is
logically correct, the command or command block written after “if ” will
be executed. If the result of the condition is incorrect, the command or
command block after the “if ” will be skipped, and operations will not occur
on commands inside the “if ” structure. If the logical result of the condition
in parentheses is TRUE, the function of the command(s) is executed. If
the result of the condition in parentheses is FALSE, the next state on the
command line is passed without any action. In the chart on the right side,
the arrow goes to the end through the “no” loop. In Table 11, the use of
the “if ” control block is shown with codes on four separate programming
languages (c, C++, c#, and Python).

Figure 2. Chart of the “if.. else” Control Block in Programming

140 | Algorithm Design in Programming Language Education

Table 12. The use of the “if...else” Loop with Codes on Different Programming Languages

if (condition)
{
 commands1();
}
else
{
 commands2();
}

if condition:

commands1()

else:

commands2()

Code Representation of the “if…else”
Control Block in the C Programming

Language

Code Representation of the “if…
else” Control Block in the Python

Programming Language

if (condition)
{
 commands1();
}
else
{
 commands2();
}

if (condition)
{
 commands1();
}
else
{
 commads2();
}

Code Representation of the “if…else”
Control Block in the C++ Programming

Language

Code Representation of the “if…else”
Control Block in the C# Programming

Language

If the logical result of the condition given in the parenthesis of the “if…
else” control block shown in Figure 2 and Table 12 is TRUE, commands1
is executed, if the result is FALSE, commands2 is executed and the next
command is passed. This use of “if…else” is a comparison command that
allows one command block or another command block to operate depending
on whether a certain condition is true. In Table 12, code representations of
the “if…else” control block in four separate programming languages (C,
C++, C#, and Python) are presented with examples.

Tuğba Saray Çetinkaya / Ali Çetinkaya | 141

Figure 3. In programming, “if /else if/..../else” Chart of the Control Block

In Figure 3, how to use the “if /else if/.... /else” control block is shown in
general. In Table 13, the use of the “if /else if/.... /else” control block in four
separate programming languages (C, C++, C#, and Python) is shown with
examples. If the logical result of the condition given in parentheses of the “if
/else if/.... /else” control block is TRUE, commands1 is executed, and if the
result is FALSE, commands2 is executed, and the next command is passed.

142 | Algorithm Design in Programming Language Education

Table 13. The use of the “if /else if / …. /else” Control Block in Different Programming
Languages

if (statement1)
{

case1();
}
else if (statement2)
{

case2();
}
else if (statement3)
{

case3();
}
else
{

case4();
}

if statement1:

case1()

elif statement2:

case2()

elif statement3:

case3()

else:

case4()

Code Representation of the “if /else
if / …. /else” Control Block in the C

Programming Language

Code Representation of the “if /else if /
…. /else” Control Block in the Python

Programming Language

if (statement1)
{

case1();
}
else if (statement2)
{

case2();
}
else if (statement3)
{

case3();
}
else
{

case4();
}

if (statement1)
{

case1();
}
else if (statement2)
{

case2();
}
else if (statement3)
{

case3();
}
else
{

case4();
}

Code Representation of the “if /else if
/ …. /else” Control Block in the C++

Programming Language

Code Representation of the “if /else if
/ …. /else” Control Block in the C#

Programming Language

Tuğba Saray Çetinkaya / Ali Çetinkaya | 143

Figure 4. Chart of “switch/case” Control Block in Programming

The “switch/case” control block is shown in Figure 4 and Table 14 in
general. How to use the “switch/case” control block is shown in Figure 4.
In Table 14, on the other hand, the use of the “switch/case” control block in
four separate programming languages (C, C++, C#, and Python) is shown
with examples. In the “switch/case” structure, if the “variable” value does
not equal any value, the commands in the “default” section will be executed.
When the value of the variable specified for the “switch” structure matches
one of the “case” statements, the matching loop block is executed regardless
of the equality status of the “case” statements. In the “case” statements, it is
ensured that the cycle is completed by placing the “break;” command at the

144 | Algorithm Design in Programming Language Education

end of the software blocks. The statements next to the “case” statement must
be constant. There are no variables in these statements. A “case” statement
can be any integer, character, or string constant but cannot be a decimal
value. A “switch” block cannot contain more than one case statement with
the same constant value.

In the structure of the “switch/case” control block shown in Figure 4 and
Table 14, if the “variable” value does not equal any value, the commands0()
in the “default” section will be executed. When the value of the variable
specified for the “switch” structure matches one of the “case” statements, the
related commands() block will be executed.

Table 14. Code Representation of the “switch/case” Loop on Different Programming
Languages

switch(variable)
{

case value1: commands1(); break;
case value2: commands2(); break;
….
case valueN: commandsN(); break;
default: commands0; break;

}

def function(int variable):
new(variable)={

value1: commands1(); break;
value2: commands2(); break;
….
valueN: commandsN(); break;

}
return new.get(variable,
“switch+case”)

Code Representation of the Control Block
“switch/case” in the C Programming

Language

Code Representation of the Control Block
“switch/case” in the Python Programming

Language

switch(variable)
{

case value1: commands1(); break;
case value2: commands2(); break;
….
case valueN: commandsN(); break;
default: commands0; break;

}

switch(variable)
{

case value1: commands1(); break;
case value2: commands2(); break;
….
case valueN: commandsN(); break;
default: commands0; break;

}

Code Representation of the Control Block
“switch/case” in the C++ Programming

Language

Code Representation of the Control Block
“switch/case” in the C# Programming

Language

Tuğba Saray Çetinkaya / Ali Çetinkaya | 145

Figure 5. The diagram of the “for” Loop in Programming

Table 15. The Use of the “for” Loop on Different Programming Languages

for(start; condition; repetition)
{

commands();
}

array = [1,2,3,4,5,6,7]
for array_item_number (i) in array:

print(i)

Code Representation of the “for” Loop
Block in the C Programming Language

Code Representation of the “for” Loop
Block in the Python Programming

Language

for(start; condition; repetition)
{

commands();
}

for(start; condition; repetition)
{

commands();
}

Code Representation of the “for” Loop
Block in the C++ Programming

Language

Code Representation of the “for” Loop
Block in the C# Programming Language

Figure 5 shows how to use the “for” loop block. In Table 15, on the
other hand, the use of the “for” control block in four different programming
languages (C, C++, C#, and Python) is presented with examples.

In the “for” loop, when the loop is first entered, the first operation of
the loop is performed with the starting value; then the condition parameter
is checked, and if the condition statement is “TRUE”, the commands()(
function or commands block) in the loop are executed. Once the operation
is completed, the condition is checked again. With the repetition parameter,

146 | Algorithm Design in Programming Language Education

the number of times the “for” loop will repeat or the number of times the
loop will be executed is indicated.

Figure 6. Diagram of the “while” loop in programming

Table 16. Code Representation of the “while” Loop in Different Programming
Languages

while(condition)
 {
 commands();
 }

counter = 0
while counter<determined_number:
 commands()

print(“operation value”, i)

The Use of the “while” Loop Block in
the C Programming Language

The Use of the “while” Loop Block in
the Python Programming Language

while(condition)
 {
 commands();
 }

while(condition)
 {
 commands();
 }

The Use of the “while” Loop Block in
the C++ Programming Language

The Use of the “while” Loop Block in
the C# Programming Language

Tuğba Saray Çetinkaya / Ali Çetinkaya | 147

Representations of the “while” loop block were given in Figure 6 and
Table 16. Figure 6 shows the way to use the “while” loop block. In Table 16,
the use of the “while” control block in four separate programming languages
(C, C++, C#, and Python) is shown with examples.

With the “while” loop, a command or command block can be used
in more than one repetition operation. For example, with the while(1)
statement, the state of the condition constantly returns TRUE. When the
condition state is FALSE, the repetition of the loop stops.

Figure 7. The diagram of the “do/while” Loop in Programming

148 | Algorithm Design in Programming Language Education

Table 17. Code Representation of the “do/while” Loop in Different Programming
Languages

do
{
 counter_value++;
 commands();
}
while (counter_value < determined_
number);

counter = 1
while True:
 print(counter)
 counter = counter + 1
 if(counter > determined_number):
 break

The Use of the “do/while” Loop Block in
the C Programming Language

The Use of the “do/while” Loop Block in
the Python Programming Language

do
{
 counter_value++;
 commands();
}
while(counter_value < determined_
number);

do
{
 counter_value++;
 commands();
}
while(counter_value < determined_
number);

The Use of the “do/while” Loop Block in
the C++ Programming Language

The Use of the “do/while” Loop Block in
the C# Programming Language

The use of the “do/while” loop block were shown in Figure 7 and Table
17. Figure 7 shows the general usage of the “do/while” loop block. In Table
17, the use of the “do/while” control block in four different programming
languages (C, C++, C#, and Python) is shown with codes. As long as the
condition in operation is TRUE, the loop block or commands() function
is executed. In the do/while loop, commands() execute the function once,
regardless of the state of the condition (TRUE or FALSE). In short,
regardless of the state of the condition, the commands() execute the function
or loop block once.

7. CONCLUSION AND RECOMMENDATIONS

Algorithm design, which is considered together with the literature studies
examined within the scope of this study, is an important topic when learning
a programming language. Regardless of the programming language, the
diagram of the steps to be followed when learning a language with an
algorithm is given in Figure 8.

Tuğba Saray Çetinkaya / Ali Çetinkaya | 149

Figure 8. Steps to follow when learning a programming language

Based on Figure 8, it can be said that when learning a programming
language, it is necessary to determine exactly what the problem means first
in a work within the scope of the designs handled by algorithms. In order
to address this problem, the algorithm development process begins with a
flowchart to be developed. While an algorithm is being developed, logical
expressions of the existing parameters and operators should be determined.
Before the specified operator and expressions are processed on the algorithm,
decision structures are processed by mathematical operations. Repetitions
of the results of decision structures are created with loops created on the
system. Then the creation of integrated functions related to the learning of
indicators, arrays, and strings on the programming language is carried out.
The gradual learning process in programming languages is completed by
creating and running the related functions.

Figure 9 shows an idea study in terms of its operations on algorithms. In
the flowchart given in Figure 9, research studies are started with the creation
of the idea. Initial designs are created with the research carried out, and
a feasibility study should be carried out in order to match the algorithm
with the idea in terms of the continuity of the algorithm process. After the
feasibility processes, prototype tests and trial tests should be performed
along with the development of the idea. With the establishment of the
implementation process, the relevant work is concluded.

150 | Algorithm Design in Programming Language Education

Figure 9. Creation of an algorithm process of an idea by flowcharts

When the topics discussed in this chapter and the related literature are
examined, it is seen that algorithms have an important role in the operation
of a system. The selection of the best algorithm for a particular problem
can be carried out with advanced programming knowledge and learning
of algorithm design. In terms of their use on information and data, the
importance of algorithms on integrated systems is gradually increasing
today. It is observed that due to this increasing importance, systems become
dependent on algorithms. The importance of algorithms, developed over
time for integrated systems, in ensuring the control and security of the system
both electronically and software is gradually increasing. States should use
artificial intelligence in the use and development of algorithms on systems
in terms of both technology security and software security. Considering
the sectoral distribution of artificial intelligence, regardless of the sector,
it has the opportunity to be applied in every field, from cyber security to
autonomous vehicles, from virtual servers to mobile systems, from satellite
communications to language processing applications and image processing.

Tuğba Saray Çetinkaya / Ali Çetinkaya | 151

REFERENCES

Deitel, H. M., & Deitel, P. J. (2004). C: How to program. Pearson Educación.
Kelly, S. (2016). What Is Python? In Python, PyGame and Raspberry Pi Game

Development (pp. 3-5). Apress, Berkeley, CA.
Chollet, F. (2021). Deep learning with Python. Simon and Schuster.
Hejlsberg, A., Wiltamuth, S., & Golde, P. (2003). C# language specification.

Addison-Wesley Longman Publishing Co., Inc..
Arnold, K., Gosling, J., & Holmes, D. (2005). The Java programming langua-

ge. Addison Wesley Professional.
Gavrilović, N., Arsić, A., Domazet, D., & Mishra, A. (2018). Algorithm for

adaptive learning process and improving learners’ skills in Java prog-
ramming language. Computer Applications in Engineering Education,
26(5), 1362-1382.

Namlı, N. A., & Şahin, M. C. (2017). Algoritma eğitiminin problem çözme
becerisi üzerine etkisi. Recep Tayyip Erdoğan Üniversitesi Sosyal Bilimler
Dergisi, 3(5), 135-153.

Zurnacı, B., & Turan, Z. (2022). Türkiye’de okul öncesinde kodlama eğitimine
ilişkin yapılan çalışmaların incelenmesi. Kocaeli Üniversitesi Eğitim Der-
gisi, 5(1), 258-286.

Bui, N. D., Yu, Y., & Jiang, L. (2019). Bilateral dependency neural networks
for cross-language algorithm classification. In 2019 IEEE 26th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER) (pp. 422-433). IEEE.

Akçay, A., & Çoklar, A. N. (2016). Bilişsel becerilerin gelişimine yönelik bir
öneri: Programlama eğitimi. Eğitim teknolojileri okumaları, 121-139.

Turk, A. M., & Bilge, A. (2018). Bilgisayar Muhendisligi Egitiminde Teknoloji
Egilimlerinin Takip Edilmesi. arXiv preprint arXiv:1807.07571.

Çevik, K. K., & Dandıl, E. (2012). Yapay sinir ağları için net platformunda
görsel bir eğitim yazılımının geliştirilmesi. Bilişim Teknolojileri Dergisi,
5(1), 19-28.

Alaybeyoğlu, A., & Morkaya, Ö. (2006). Ülkemizdeki Bilgisayar Mühendisliği
Lisans Eğitimiile Yazılım Mühendisliği Lisans Eğitiminin Karşılaştırılma-
sı. Proceedings of the 3. Ulusal Elektrik Elektronik Bilgisayar Mühendis-
likleri Eğitimi Sempozyumu.

Özdener, N. (2008). A comparison of the misconceptions about the time-effi-
ciency of algorithms by various profiles of computer-programming stu-
dents. Computers & Education, 51(3), 1094-1102.

Ozoran, D., Cagiltay, N., & Topalli, D. (2012). Using scratch in introduction
to programming course for engineering students. In 2nd International
Engineering Education Conference (IEEC2012) (Vol. 2, pp. 125-132).

152 | Algorithm Design in Programming Language Education

Özyurt, Ö., & Özyurt, H. (2016). Using Facebook to enhance learning expe-
riences of students in computer programming at Introduction to Prog-
ramming and Algorithm course. Computer Applications in Engineering
Education, 24(4), 546-554.

Balreira, D. G., Silveira, T. L. D., & Wickboldt, J. A. (2023). Investigating the
impact of adopting Python and C languages for introductory engineering
programming courses. Computer Applications in Engineering Educati-
on, 31(1), 47-62.

Shnaider, P., Chernysheva, A., Khlopotov, M., & Babayants, C. (2023). Gene-
ration of Course Prerequisites and Learning Outcomes Using Machine
Learning Methods. In Artificial Intelligence in Education Technologies:
New Development and Innovative Practices: Proceedings of 2022 3rd
International Conference on Artificial Intelligence in Education Techno-
logy (pp. 34-46). Singapore: Springer Nature Singapore.

Chen, L., & Zhang, X. (2023). Research On the Teaching Method of Prog-
ramming Course by Using Computational Thinking. IC-ICAIE 2022,
AHCS 9, pp.383-389, 2023, DOI: 10.2991/978-94-6463-040-4_58

Gökoğlu, S. (2017). Programlama eğitiminde algoritma algısı: Bir metafor ana-
lizi. Cumhuriyet International Journal of Education, 6(1), 1-14.

Akkaya, A., & Öztürk, G. (2020). Algoritma yazma ve öğrenimi hakkında mes-
lek yüksekokulu öğrencilerinin görüşleri. Balıkesir Üniversitesi Fen Bi-
limleri Enstitüsü Dergisi, 22(1), 367-380.

Alper, A., & Öztürk, S. (2019). Programlama öğretimindeki ters-yüz öğretim
yönteminin öğrencilerin başarılarına, bilgisayara yönelik tutumuna ve
kendi kendine öğrenme düzeylerine etkisi. Bilim Eğitim Sanat ve Tekno-
loji Dergisi, 3(1), 13-26.

Yukselturk, E., & Altıok, S. (2016). Bilişim teknolojileri öğretmen adaylarının
programlama öğretiminde Scratch aracının kullanımına ilişkin algıları.
Mersin Üniversitesi Eğitim Fakültesi Dergisi, 12(1).

Yalçınkaya, B., Dönmez, A. H., Aydın, F., Kayalı, N., & Sönmez, A. R., (2018).
İlköğretim Çocuklarının Kodlama Algısı Üzerine Emprik Bir Analiz Ça-
lışması ve Çocuk Kütüphanelerinde Uygulanmasının Önemi. 1. Uluslara-
rası Çocuk Kütüphaneleri Sempozyumu (pp.126-138). Nevşehir, Turkey

Karaman, U., & Filiz, S. (2019). Kodlama eğitimine yönelik tutum ölçeği’nin
(KEYTÖ) geliştirilmesi. Gelecek Vizyonlar Dergisi (fvj: Future Visions
Journal), 3(2), 36-47.

Pala, F. K., & Mıhcı-Türker, P. (2019). Öğretmen adaylarının programlama
eğitimine yönelik görüşleri. Journal of Theoretical Educational Science,
12(1), 116-134.

Aytekin, A., Sönmez Çakır, F., Yücel, Y. B. & Kulaözü, İ. (2018). Algoritmaların
Hayatımızdaki Yeri ve Önemi. Avrasya Sosyal ve Ekonomi Araştırmaları
Dergisi, 5 (7), 143-150 .

Tuğba Saray Çetinkaya / Ali Çetinkaya | 153

Deniz, G., & Eryılmaz, S. (2019). Türkiye’de programlama eğitimi ile ilgili
yapılan çalışmaların incelenmesi: Bir betimsel analiz çalışması. Eğitimde
Kuram ve Uygulama, 15(4), 319-338.

Kaban, A. (2021). Mobil Programlama Dersini Alan Öğretmen Adaylarının
Mobil Programlama Öğrenimine Yönelik Görüşleri. Ahi Evran Üniversi-
tesi Kırşehir Eğitim Fakültesi Dergisi, 22(1), 497-520.

Bayraktar, A. (2021). Türkiye’de Bilgi ve Belge Yönetimi Müfredatlarında Oku-
tulan Bilgisayar Programlarına ve Programlama Dillerine Yönelik Dersler.
Bilgi Ve Belge Araştırmaları, (16), 103-131 .

