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Chapter 13

Market Linkages and Their Impact on G7 
Economies: Exploring Network Connectedness 

Erhan Uluceviz1*

Abstract

This project departs from the well-established finding in macrofinance 
literature that financial variables have a significant impact on macroeconomic 
variables. Building on this, we investigate the volatility connectedness 
among the stock markets of the Group of Seven (G7) countries, which 
account for a significant portion of global economic output and stock market 
capitalization. Using the Diebold-Yilmaz Connectedness Index (DYCI) 
framework, we analyze the connectedness of the G7 stock markets over the 
period from January 2010 to June 2024. We assess how volatility spills across 
these markets, particularly in response to major global events such as the 
2011 U.S. credit rating downgrade, the 2013 “Taper Tantrum,” the 2016 
U.S. presidential election, and the COVID-19 pandemic. The findings reveal 
that market connectedness is highly dynamic, with the U.S. consistently 
acting as the primary connectedness source, followed by Germany and 
France during times of market stress. Japan, in contrast, is predominantly a 
net receiver of volatility. The results further highlight the varying roles of the 
G7 markets in volatility connectedness, indicating limited roles for the UK, 
Italy and Canada. The study also explores the relative importance of each 
market as a shock propagator, finding that the U.S. has the highest shock 
propagation capacity, while Japan consistently has the lowest. Consistent 
with the literature, our findings reveal a strong relationship between 
market volatility and the macroeconomic policy impacts of G7 economies, 
particularly during key market and economic episodes. These insights 
contribute to the understanding of economic and financial market interaction 
and provide valuable implications for policymakers and investors navigating 
the interconnected global markets.
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1. INTRODUCTION

Recent financial crises and the subsequent recessions, including the 
2007-2009 Global Financial Crisis and the COVID-19 pandemic, have 
underscored the need to better understand the linkages between the financial 
sector and key macroeconomic variables, such as GDP and unemployment. 
These linkages have been explored using various approaches in both 
developing and developed countries. For example, Abildgren (2016) 
examines the interaction between financial shocks and business cycles in 
Denmark, the USA, and Canada over the past century. While Karanasos, 
Yfanti, and Hunter (2022) and Ngene (2021) focus on the effects of 
financial shocks on the U.S. economy, Joaqui-Barandica, Gomez Daza, and 
Lopez-Estrada (2024) and Biswas et al. (2024) investigate similar dynamics 
in emerging economies. Wang and Huang (2022) attempt to forecast the 
Chinese macroeconomy by analyzing the volatility connectedness of financial 
institutions. Given the understanding that financial shocks impact the real 
economy, we explore the volatility connectedness among the stock markets 
of the Group of Seven (G7) countries, offering valuable insights into the 
interactions of major global economies and their stock markets.

G7 is an informal forum comprising of seven advanced economies: the 
United States of America (U.S. or USA), Germany (GER), the United 
Kingdom (U.K.), France (FRA), Japan (JAP), Italy (ITA), and Canada 
(CAN). As of the end of 2023, G7 countries account for approximately 
44% of global GDP (World Bank, n.d.; authors’ calculations). An indicative 
value of their stock market capitalization represents approximately 60% of 
the global total as of 2022 (see Section 2). 

G7 countries are highly integrated through political, regional, and 
trade channels, and they host the world’s largest financial markets. These 
nations are also home to some of the most innovative firms that drive 
global trends in manufacturing and technology, and often feature cross-
listed companies across their stock markets. Due to their strong economic 
ties and interdependence, it is well-known that the stock markets of G7 
countries are closely linked, with fluctuations in these markets having 
significant implications for both developed and developing economies. 
The relationship between economic growth and financial integration has 
been extensively discussed, with Bekaert and Harvey (1995) arguing that 
the two are closely connected. Additionally, Tahai, Rutledge, and Karim 
(2004) find significant comovement in G7 stock market returns, suggesting 
a higher degree of market integration. 



Erhan Uluceviz | 259

More recently, Attilio, Faria, and Prado (2024) examined the impact 
of the U.S. stock market on the BRICS (Brazil, Russia, India, China, 
and South Africa) and G7 economies. They found that greater financial 
integration amplifies the influence of the U.S. stock market on both the 
BRICS and G7. Furthermore, they observed that, compared to the BRICS 
countries, G7 stock markets and policy rates are more sensitive to shocks 
originating from the U.S. These studies collectively highlight the significant 
interconnectedness of G7 stock markets, which is central to understanding 
the dynamics we explore in this paper. In another study, Zhang, Sha, and Xu 
(2021) examined volatility spillovers between the G7 and BRIC countries. 
They found that key events, such as the European Debt Crisis, the China-
US Trade War, and the Covid-19 Pandemic, significantly strengthened 
volatility spillovers in global financial markets. Ma, Wang, and He (2022) 
investigate the spillovers between economic policy uncertainty (EPU) 
and stock market realized volatility in G7 countries using the methods of 
Diebold and Yilmaz (2012) and Barunik and Krehlik (2018). They find that 
the strongest spillovers from EPU to stock market volatility occur within a 
3–18 month period, indicating that policy uncertainty has a gradual impact 
on market risk over time. This suggests that, when making investment 
decisions, investors should focus not only on recent economic policies but 
also on macroeconomic conditions from the past 18 months.

Building on the existing literature, this paper aims to investigate volatility 
connectedness among the G7 stock markets and analyze how these dynamics 
have evolved over time. Additionally, we assess the relative importance 
of each market as a shock propagator. Our approach is based on a well-
established and widely used methodology, specifically the Diebold-Yilmaz 
Connectedness Index (DYCI), introduced in a series of papers by Diebold 
and Yilmaz (2009, 2012, 2014). Furthermore, we incorporate an extension 
of the DYCI methodology developed by Schmidbauer, Roesch, and Uluceviz 
(2013, 2017), and Schmidbauer, Roesch, Uluceviz, and Erkol (2016). 
Schmidbauer et al. (2013, 2017; 2016) introduce a centrality measure, 
derived from the DYCI framework, to quantify the relative importance of 
each G7 market as a shock propagator. For additional insights into centrality 
measures within the network literature, see Newman (2010).

The close relationship between the real and financial sectors of selected 
developed economies, including Switzerland and the U.S., has been studied 
within the connectedness index framework by Uluceviz and Yilmaz (2020, 
2021). Their findings suggest that when the real side of the economy is 
represented solely by real variables, it acts as a net receiver of connectedness 
from the financial variables including the stock markets. Therefore, 
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representing the G7 countries with their major stock indices indirectly 
allows us to explore the interactions between the economies of these nations 
as well.

Our analysis reveals that market connectedness is highly dynamic, 
responding to major global events such as the 2011 U.S. credit rating 
downgrade, the 2013 “Taper Tantrum,” Donald Trump’s 2016 election, 
and the COVID-19 pandemic. The U.S. emerged as the primary source of 
volatility spillovers, while Europe, particularly Germany and France, played 
significant roles during crises. In contrast, Japan was predominantly a net 
receiver of volatility. Italy’s contribution was limited, with no substantial 
role in transmitting or receiving shocks compared to other G7 countries. 
Canada and the U.K., had a relatively minor impact on overall volatility 
connectedness among the G7 markets. The findings also highlight 
the varying roles of the G7 countries as shock propagators. The U.S. 
consistently emerges as the most significant shock propagator, followed by 
Germany and France, which also play substantial roles. The U.K. and Italy 
contribute moderately to shock transmission, while Canada has a relatively 
smaller impact. Japan, despite its economic stature, is found to be the least 
significant shock propagator throughout the analysis period. 

Our findings demonstrate a strong association between market volatility 
and the macroeconomic policy impacts of G7 economies, especially during 
critical market and economic events.

Our main contribution in this study, from both policy and investment 
perspectives, is to provide a clearer understanding of the interrelations 
among major developed economies and their stock markets through an 
approach that is both easy to interpret and apply. 

The remainder of the chapter is organized as follows: Section 2 
provides an overview of the data used in the analysis. Section 3 outlines the 
methodological approach. Section 4 presents the empirical findings, while 
Section 5 concludes with a summary and final remarks.

2. DATA

This paper examines the stock markets of the G7 countries, using the 
major indices to represent each market. The data were obtained from Yahoo 
Finance through its free-tier access.2 We downloaded daily Open, High, 
Low, and Close (OHLC) data using the quantmod package (Ryan & Ulrich, 

2 https://finance.yahoo.com. Yahoo Finance is part of the Yahoo network and offers a range of 
financial data, news, commentary, and personalized financial management services. 
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2024) in R (R Core Team, 2024). The sample period spans from January 5, 
2010, to June 28, 2024, covering a total of 3,770 trading days.

Detailed information about the selected indices, their corresponding 
Yahoo Finance tickers, and the total market capitalizations for each market 
are provided in Table 1. It is important to note that the total market 
capitalization values for the respective countries are sourced from the World 
Bank, and the most recent data for each country may vary. Therefore, these 
values should be interpreted with caution. To provide an indicative value for 
the share of G7 stock markets in the global economy, we also include the 
total world market capitalization. We find that the G7 countries account for 
approximately 60% of the global market capitalization. 

Given the downloaded OHLC data, we compute daily volatilities using 
the Garman and Klass (1980) approach, as applied in Diebold and Yilmaz 
(2009). We then compute the natural logarithm of each volatility series 
before proceeding with the estimation procedure outlined in Section 3. 
It is well documented that volatilities are serially correlated and skewed 
(Bates, 1991; Cont, 2001; Bollerslev, Gibson, & Zhou, 2011). Taking the 
logarithm helps approximate the volatility series to normality (Diebold & 
Yilmaz, 2014).

Table 1: Selected G7 Markets

Country Index Ticker Market cap
(USD mn) Data Year

USA S&P 500 ^GSPC 40,297,980 2022

Germany DAX ^GDAXI 1,889,664 2022

UK FTSE 100 ^FTSE 3,095,983 2022

France CAC 40 ^FCHI 2,365,950 2018

Japan Nikkei 225 ^N225 5,380,475 2022

Italy FTSE MIB FTSEMIB.MI 587,312 2014

Canada S&P/TSX Composite ^GSPTSE 2,744,720 2022

G7 (total)   56,362,086*  

World   93,960,000 2022

G7/World   60%  

*: This sum is indicative due to the differences in the data years.

Source: Worldbank, Market capitalization of listed domestic companies (current USD) 
and author’s calculations. https://data.worldbank.org/indicator/CM.MKT.LCAP.CD. 
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3. DIEBOLD-YILMAZ CONNECTEDNESS INDEX 
APPROACH

In this section, we provide a brief introduction to the DYCI methodology, 
originally developed by Diebold and Yilmaz (2009, 2012, 2014), along 
with one of its extensions, as applied in this paper, by Schmidbauer et al. 
(2013, 2017; 2016). For a more detailed overview, interested readers are 
encouraged to refer to the original papers.

A covariance-stationary  N -variable ( )VAR p  model is given by:

,

which has a moving average (MA) representation of the form:

0t i t ii
x Aε∞

−=
=∑ ,

where the N N×  coefficient matrices iA  are determined by the recursive 
formula:

1 1 2 2i i i p i pA A A A− − −= ∅ +∅ + +∅ , 0  nA I= , 0iA =  for 0i < .

These coefficient matrices govern the model dynamics. Our focus is on 
the variance decompositions, which estimate the proportion of the h -step 
ahead forecast error variance for ix  that is attributable to shocks to jx , 

i j∀ ≠ , for each i . The calculation of variance decompositions requires 
orthogonal innovations, typically achieved through identification schemes 
like Cholesky decomposition. However, this approach results in variable-
ordering dependent outcomes. To address this issue, Diebold and Yılmaz 
(2012) use the generalized VAR approach, developed by Koop, Pesaran and 
Potter (1996) and Pesaran and Shin (1998), which accounts for correlated 
shocks and produces ordering-invariant results.

Pesaran and Shin (1998) demonstrate that, under the assumption 
of a multivariate normal distribution for the error term, tε , the h -step 
generalized impulse response function, scaled by the variance of the variable, 
represents node j ‘s contribution to node i ‘s h -step ahead generalized 
forecast error variance, denoted ( )g

ij hθ  for 1 , 2,h = … , as follows:

(1)

where Σ  is the variance-covariance matrix of the error vector ε , jjσ  is 
the standard deviation of the error term in the j th equation, and je  is 
the selection vector with a 1 in the j th position and zeros elsewhere. By 
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normalizing each element of the variance decomposition matrix by the 
respective row sum, we obtain:
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h
i jC ←  is referred to as pairwise directional connectedness. In network 

theory, it is interpreted as the adjacency matrix of a weighted directed 
network, denoted by C , where the ij th element is ijc . 

The normalized entries of the generalized variance decomposition matrix 
in Equation 2 are used to construct a summary measure of the connectedness 
matrix C . Diebold and Yilmaz (2012) define the total connectedness index 
as:
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The direct connectedness from node i  (to node i ) is given by the column 
(row) sums in C , excluding the node’s connectedness to itself:

 
•

1, 
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to node  from others :  
N
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The difference between shocks originating from and directed to node i  
provides a measure of the net directional connectedness transmitted from 
node i  to all other nodes. This is referred to as:

 • i • i iC C C← ←= − (6)

To extend the DYCI framework, Schmidbauer et al. (2013, 2017; 2016) 
assume that all available information about the network throughout day t  
is contained in C . Additionally, if an initial hypothetical shock of unit size 
hits node k  on day t , it will propagate across the nodes of the network 
throughout day t  as follows:

1 .  s sn C n+ = ,   0,1 ,  2, s= … (7)
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A hypothetical shock is denoted as ( )0  0, ,0,1,  0, ,  0n = … … , where 1 is 
the k th element of 0n  (with step  s = 0 representing the initial shock). By 
iterating Eq. (7) and examining the steady-state properties of the model as 
s →∞ , we obtain:

 .C′ = ′v v (8)

When the left eigenvector ( )1, , 'Nv v= …v  of C  is normalized so that 

1
1N

kk
v

=
=∑ , kv  is referred to as the propagation of node k . Intuitively, 

kv  represents the power of node k  as a volatility transmitter within the 
network. A closely related concept in social network analysis, eigenvector 
centrality, is also widely used, as discussed in Bonacich (1987).

Empirically, we fit a standard VAR(3) model to 7N =  endogenous 
variables, representing the volatility of major stock market indices from the 
G7 countries. We use rolling data windows of size 250 (i.e., the sample 
for day t  includes data from days 249t −  to t ). Following Diebold and 
Yilmaz (2012), we apply the ordering-invariant impulse response function 
identification approach proposed by Pesaran and Shin (1998). Forecasting 

20h =  steps ahead, we compute the forecast error variance decomposition. 
This procedure is repeated for each t, generating a sequence of connectedness 
matrices.

4. EMPIRICAL RESULTS

This section presents the empirical results of our estimations based 
on the DYCI approach outlined in Section 3. We focus exclusively on the 
dynamic results, as they are more pertinent to our analysis. These results 
offer an overview of key events from 2010 to 2024 that contributed to 
unprecedented structural changes in the global economy, including the 
COVID-19 pandemic. 

Since the DYCI approach relies on rolling windows of VAR estimations, 
selecting the appropriate lag length is a crucial first step in any connectedness 
analysis. To determine a suitable lag length, we performed estimations for 
lag lengths ranging from 1 to 5 using a 250-day rolling window. A 250-day 
window is commonly used in daily analysis, as it roughly corresponds to 
one year of trading days (around 252 days). Additionally, since the DYCI 
methodology involves the decomposition of forecast error variance, it is 
important to choose a forecast horizon that allows for stabilization of the 
forecast error variance decomposition. Shorter forecast horizons often fail to 
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achieve this stabilization; however when we selected h = 20 days, our results 
were sufficiently stable. Given these choices, we plot the connectedness 
index results and select the appropriate lag length based on the most suitable 
outcome. Figure 6 displays the total connectedness results, including the 
maximum and minimum index values for each day within the shaded region, 
corresponding to VAR lag lengths ranging from 1 to 5. The VAR(3) model 
results are plotted as a dark line. We observe that the VAR(3) model fits 
well and is sufficiently parsimonious, leading us to select a lag length of 3.

Proceeding with the selected model, we first plot the connectedness index 
series in Figure 1 which is estimated using Equation 3. The index starts at 
64.20% on December 20, 2010 and ends at 45.37% on June 28, 2024. It 
fluctuates between a minimum of 37.83% on December 14, 2017 and a 
maximum of 76.16% on June 15, 2020. The dynamics of the index are more 
relevant than the index values, and we briefly discuss key episodes observed 
during the analysis period. 

The index value at the beginning of the analysis period represents the 
highest point throughout the entire period, excluding the COVID-19 
pandemic. After this, the index begins to decrease throughout 2011, until it 
experiences a sharp increase at the beginning of August 2011, following the 
S&P downgrade of the U.S. credit rating from AAA to AA+ on August 5, 
2011.3 It oscillates above 60% until June 2012. The index starts decreasing, 
and further fueled, by the annoucement of a third round of Quantitative 
Easing (QE3) by Federal Reserve (Fed).4 The decrease in the index lasted 
until, end of May 2013, the time Fed Chairman Bernanke testified before the 
U.S. Congress’ Joint Economic Committee, where he revealed the Federal 
Open Market Committee’s (FOMC) intention to taper bond purchases. His 
testimony triggered a rise in bond yields and a decline in global stock prices, 
an event known as the “Taper Tantrum.”5 Increase of the index lasted until 
early November 2016 when Donald Trump was elected the President of 
the U.S. Expectations of fiscal stimulus and tax cuts under a Republican-
controlled Congress led to a surge in equity markets.6 By the end of 2017, 
the index had reached an all-time low. It then rose until February 2018, 

3 https://www.nytimes.com/2011/08/06/business/us-debt-downgraded-by-sp.html.
 Accessed November 25, 2024.
4 https://money.cnn.com/2012/09/13/news/economy/federal-reserve-qe3/index.html.
 Accessed November 25, 2024.
5 https://www.reuters.com/article/us-usa-fed-2013-timeline-idUSKCN1P52A8. Accessed on 

November 25, 2024.
6 https://www.ft.com/content/6d24125c-c066-11e6-9bca-2b93a6856354.
 Accessed November 25, 2024.



266 | Market Linkages and Their Impact on G7 Economies: Exploring Network Connectedness

fluctuating within the 50%-56% range, until the end of 2019. During the 
onset of the COVID-19 pandemic7, the index peaked at 76.02% on March 
16, 2024, just below its all-time high of 76.16%, which occurred on June 
16, 2024. The index remained above 70% until December 2020, before 
falling to the high 50% range, likely due to significant gains in the U.S. 
stock markets. The year 2020 ended with the Dow rising by 7.2%, the S&P 
500 gaining 16.3%, and the Nasdaq surging 43.6%.8 The index fluctuated 
around, and often exceeded, 60% until the end of May 2023, after which it 
began to decline through the remainder of the analysis period. This decline 
coincided with the end of the COVID-19 pandemic, as the World Health 
Organization (WHO) declared on May 5, 2023, the cessation of COVID-19 
as a public health emergency, while stressing that the disease remains a global 
threat.9

Figure 2 consists of sub-figures of size 8 × 8, summarizing the time 
series of the total and directional dynamic connectedness indices. This figure 
contains the time series of all the connectedness matrices that form the basis 
of the analysis. The time series of the 7 × 7 sub-figures created by the first 7 
rows and 7 columns in Figure 2 correspond to Equation 1. The connectedness 
index calculated using Equation 3 is also shown in the bottom-right corner 
of this figure. The last row (“to others”) in Figure 2, excluding the right-
most plot, corresponds to Equation 4, while the last column (“from others”), 
excluding the bottom plot, corresponds to Equation 5. We focus diagonal 
sub-figures of the first 7 × 7 sub-figures. These plots represent the own 
shares of connectedness, i.e., the connectedness arising from and directed 
towards itself. A higher level of own connectedness indicates a lower impact 
of these markets on others. Japan appears to have the highest own share 
of connectedness throughout the analysis period, suggesting that it acts as 
a lower volatility connectedness source with the rest of the G7 markets. 
It ranks first with an average own connectedness value of 63.79%, while 
France ranks last with an average value of 31.36%.

To assess the connectedness to (from) markets, we focus on the “to 
others” (“from others”) columns in Figure 1 and present a concise version 
of these in Figure 3. Additionally, we compute and plot the net effect using 
Equation 6. The results indicate that, on average, the U.S. is the largest 
net source of volatility connectedness towards the other G7 markets. With 

7 https://time.com/5791661/who-coronavirus-pandemic-declaration/.
 Accessed November 25, 2024.
8 https://www.npr.org/2020/12/31/952267894/stocks-2020-a-stunning-crash-then-a-record-

setting-boom-created-centibillionaire. Accessed November 25, 2024.
9 https://news.un.org/en/story/2023/05/1136367. Accessed 2024-11-25.
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a net connectedness of 13.10%, the U.S. contributes significant volatility 
connectedness to the rest of the G7. In contrast, Japan is the market 
that receives the most connectedness from others, with an average net 
connectedness of -21.15%. The U.S. was also a major source of connectedness 
during the end of May and early June 2019, with net connectedness from 
the U.S. to other markets peaking at 66.81% on June 6, 2019. This surge is 
likely linked to the large sell-offs in May 2019 and U.S. President Trump’s 
tweets about escalating trade tensions between the U.S. and China, as 
well as concerns about global economic growth.10 Continental European 
countries—Germany, France, and Italy—also experienced significant spikes 
in connectedness to other markets following the onset of the Russia-Ukraine 
war in late February 2022. They acted as net sources of connectedness, with 
average values of 3.85%, 6.70%, and 0.63%, respectively. In contrast, the 
UK was a net receiver, with a connectedness value of -5.59%. Meanwhile, 
Canada functioned as a net source, contributing a connectedness value of 
2.47%.

To analyze the net connectedness from the major net connectedness 
source, the U.S., we present Figure 4, which illustrates the net directional 
connectedness from the U.S. to the respective G7 stock markets. Excluding 
the COVID-19 and the mid-2013 “Taper Tantrum” periods, the U.S. 
predominantly acts mostly as a net source of connectedness. Referring back 
to our earlier discussion of Japan in Figure 2, where we noted that Japan 
mostly transmits connectedness to itself rather than to others, we observe 
that the U.S. plays a significant role in transmitting connectedness to Japan. 
The U.S. is almost always a net source to Japan, with only a few brief 
exceptions. European markets typically act as receivers of connectedness, 
except during the COVID-19 period, when they function as net sources of 
connectedness towards the U.S.

To quantify the relative importance of each market as a shock propagator, 
we present Figure 5, which displays the propagation values estimated using 
Equation 8. These values sum to 1, and the larger the value for a country, 
the more significant its market as a shock propagator. Interestingly, despite 
Japan being one of the wealthiest countries in the G7, it has the lowest 
importance as a shock propagator throughout most of the analysis period. 
Schmidbauer et al. (2013) demonstrated that propagation values can be 
interpreted as probabilities, representing the stationary distribution of a 
Markov chain derived from a suitable transformation of the connectedness 

10 https://www.cnbc.com/2019/05/31/the-markets-drop-in-may-felt-serious-but-it-is-normal-
for-stocks.html. Accessed 2024-11-27.
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matrix C . As a result, the sum of the propagation values provides a valid 
measure. When grouping countries by continent, the relative importance of 
markets becomes even more apparent, likely due to the influence of trade 
channels on market importance. Averaging the propagation values over time, 
we find that the U.S. has the largest propagation value at 0.18, followed by 
Germany (0.16), the UK (0.14), France (0.16), and Italy (0.15). Canada 
has a propagation value of 0.15, while Japan has the smallest at 0.07. When 
grouped by continent, Europe (Germany, France, Italy, and the UK) has a 
combined propagation value of 0.60, the Americas (U.S. and Canada) have 
0.33, and Asia (Japan) has 0.07. Averaging over different periods yields 
similar results. However, when we focus on the period from the beginning 
of the analysis until the end of May 2013, European propagation value rises 
to 0.66, while the American value is 0.29, and Japan’s value drops to 0.05. 
This shift is likely attributable to the European sovereign debt crisis during 
the 2009-2012 period post global financial crisis.

5. SUMMARY AND CONCLUSIONS

This paper examines the stock markets of the G7 countries (the U.S., 
Germany, France, the U.K., Japan, Italy, and Canada) from 2010 to 
2024, using their major indices as proxies for each market. The analysis 
focuses on daily volatility connectedness, employing the Diebold-Yilmaz 
Connectedness Index methodology (Diebold and Yilmaz, 2009, 2012, 
2014), which applies rolling Vector Auto Regressive models to estimate 
volatility connectedness. Additionally, the study incorporates an extension 
by Schmidbauer et al. (2013, 2017; 2016) to assess the relative importance 
of each G7 market as a shock propagator.

The goal is to uncover patterns of financial connectedness and identify 
significant global events that led to structural shifts in the connectedness 
behavior of these stock markets.

The study reveals that volatility connectedness among the G7 markets 
is highly dynamic and fluctuates significantly in response to major global 
events, including the U.S. credit rating downgrade in 2011, the Federal 
Reserve’s announcement of the prospective “Taper Tantrum” in May 2013, 
the election of Donald Trump as U.S. president in 2016, and the global 
disruption caused by the COVID-19 pandemic in 2020. These events are 
marked by substantial fluctuations in the total connectedness index, with 
notable peaks and following troughs.

The U.S. consistently emerged as the primary source of volatility 
spillovers, playing a central role in shaping connectedness across the G7 
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markets, particularly during geopolitical crises such as the U.S.-China trade 
tensions in 2019 and the COVID-19 pandemic from from early 2020 to 
mid-2023. In contrast, Japan, despite being one of the wealthiest G7 nations, 
played a more passive role in volatility connectedness, often serving as a net 
receiver from other markets, particularly during periods of market stress.

The study also highlights the significant role of European countries, 
particularly Germany and France, in contributing to market connectedness 
during key events such as the European sovereign debt crisis (2009-
2012), the Russia-Ukraine war that began in late February 2022, and 
the COVID-19 pandemic from early 2020 to mid-2023. These countries 
became major sources of increased volatility connectedness, reflecting the 
substantial impact of regional economic and policy uncertainties on global 
marketsIn contrast, markets like the UK were primarily net receivers of 
volatility connectedness, with relatively smaller contributions. Italy and 
Canada, on the other hand, had a minimal impact on overall connectedness 
among the G7 countries.

The results suggest that global economic shocks, such as the COVID-19 
pandemic, had a profound impact on market connectedness, significantly 
raising the levels of connectedness among the G7 markets. The study 
concludes that the U.S. stock market is the most influential driver of global 
volatility connectedness and shock propagator, with European countries 
following the U.S. in terms of their impact. In contrast, Japan remains less 
influential both as a source of volatility connectedness and as an important 
shock propagator. 

Overall, the paper provides valuable insights into the dynamics of 
G7 market connectedness, highlighting the shifting roles of different G7 
markets in responding to and transmitting global economic shocks. These 
findings underscore the importance of understanding market dynamics for 
policymakers and investors as they navigate an increasingly interconnected 
global financial system. Future research could explore subgroups within 
the G7, incorporate their trade relations, and apply alternative volatility 
measures to gain a deeper understanding of the various dimensions of G7 
connectedness.
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Fig. 1 Total connectedness index
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Fig. 5 Propagation values

Fig. 6 DYCI: (shaded area: min & max of laglength 1-5), (solid line: VAR(3), selected)
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