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Abstract

In this study, optimality conditions of a beam model based on Mindlin’s gradient elasticity theory is stud-
ied. The beam system depends on the external excitation function, non-homogeneous boundary conditions and 
some mixed integral constraints including ineqality/equality on the control function and state variable. Before 
obtaining the optimality conditions of the system, energy integral method is employed for proving the uniqueness 
of the solution of the beam system. Controllability properties of the system is also discussed. Adjoint system 
corresponding to beam system is derived with suitable terminal conditions for achieving the maximum principle. 
The beauty of the present paper is that the necessary and sufficient optimality conditions of a hyperbolic beam 
equation based on Mindlin’s gradient elasticity theory are firstly derived in this paper in the form of a maximum 
principle. In order to show the confirmation of the obtained theoretical results, a real mechanical problem is 
illustrated and results are presented in the table and graphical forms.

1 Introduction

The contributions of classical continuum theories, including nonlinear or linear plasticity and elasticity, to science 
and engineering to improve the human life quality by modeling solid and structures are deniable. These continuum 
theories which are also named Euler-Bernoulli or Timoshenko models were introduced in 1750s for explaining the 
conservation laws of solid and structures in macro-scales. After 1920s, especially later than detailed usage of 
advanced optical and electron microscopes, the dimensions of structures and systems in engineering and material 
science are scaled down to micro and nano-domains. The elasticity properties and characteristic behaviors of 
materials in the micro-nano domains was also tried to explained by means of classical continuum models at the 
beginning. But observations made by advanced electron and optical microscopes show that classical continuum 
theories are not able to explain the characteristic behaviors and elasticity properties of micro or nano-scaled 
solid and structures due to lack of an internal length scale parameters, characteristic of the underlying nano 
or micro structured materials, from the constitutive equations. In order to overcome this difficulties, several 
studies and theories are introduced in the papers [1]-[11]. In [8], Mindlin introduced and developed gradient 
elasticity theory which is comprehension of linear elasticity theory which contains higher-order terms to taking 
into account for structural effects in micro-size or couple stress effects in materials. Mindlin improved his theory by 
including new terms in the expressions of potential and kinetic energy and introducing intrinsic micro-structural 
parameter without however providing explicit expressions that correlate micro-struc-ture with macro-structure 
[13]. According to Mindlin’s this theory, the energy in the strain is subject to the elastic strain and gradients of the 
elastic strain. Due to these gradients, constitutive equations includes additional coefficients with the dimension of
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a length which are called gradient coefficients. For sake, see, [1]-[13]. Since then, many researchers studying strain

gradient elastic theories, reproduced either from lattice models or homogenization approaches, have presented

in the literature. Although gracious, none of them derives as a whole the equation of motion as well as the

on-classical or classical boundary conditions seeming in Mindlin theory, in terms of the taken into account lattice

or continuum unit cell. Moreover, no continuum or lattice models that affirm the second gradient elastic theory of

Mindlin presented in the literature. In [13], authors introduce a model equation of motion, appearing in Mindlin

theory, confirming the Mindlin second gradient elastic theory. On the other hand, in order to determine the

necessary and sufficient optimality conditions for these kind vibrating systems, Maximum principle is introduced

by L. S. Pontryagin 1960s as a necessary condition for optimal control problems representing in way of ordinary

differential equations[14]. In [15], Egorov also shows that maximum principle is also necessary requirement for

some class optimal control problems modeled by partial differential equations. In [16, 17], Barnes and Lee proved

that maximum principle is sufficient requirement for control problems under some convexity assumptions on the

constraints functions. Russell and Komkov studied for obtaining the necessary and sufficient conditions of similar

vibrating systems including quadratic cost functionals[18, 19].In [20], Active control of an improved Boussinesq

system is achieved via maximum principle. In [21], Necessary and sufficient conditions for a vibrating Euler-

Bernoulli beam system, including control functions more than one, is achieved in the form of maximum principle.

In [22], necessary and sufficient conditions of a distributed parameter system is derived. The original contribution

of the present paper to literature is that the necessary and sufficient optimality conditions of a beam system,

satisfying Mindlin gradient elasticity theory, is firstly derived in the form of maximum principle in this paper.

Specifically, in the light of [21] and [22] in present study, necessary and sufficient optimality conditions of

a beam model satisfying Mindlin’s gradient elasticity theory is studied. The beam system under consideration

depends on the external excitation function caused to undesirable vibration in the system, non-homogeneous

boundary conditions showing thermal or magnetically effects and some mixed integral constraints including in-

eqality/equality on the control function and state variable. Before obtaining the optimality conditions of the

system, by employing the energy integral method, the uniqueness of the solution to the beam system is proved.

Controllability properties of the system is also discussed via observability. Adjoint system corresponding to beam

system is introduced with suitable terminal conditions for achieving the maximum principle. In order to indicate

the confirmation of the obtained theoretical results, a numerical example is given and results are presented in the

table and graphical forms. By observing the table and graphics, it is that introduced conditions in the form of

maximum principle are necessary and sufficient for optimality. Consider the following beam system defined in

[13];

∂2ν

∂x2
+

ℓ2

12

∂4ν

∂x4
+

ℓ4

36

∂6ν

∂x6
=

1

c2

(
∂2ν

∂t2
− ℓ2

3

ρ
′

ρ

∂4ν

∂t2∂x2

)
+ f(t, x) + C(t, x) (1)

where ν(t, x) is the transversal displacement at (t, x) ∈ Ω = {(t, x) : t ∈ [0, tf ], x ∈ [0, ℓ]}, x is space variable, ℓ is

the length of the beam, t is time variable, tf is the final time of control duration, c2 = E
ρ
in which ρ is mass density

of the beam and E is modulus elasticity, ρ′ ≡ ρ is the the density of the micro-structural cells, f is external excita-

tion function, C(t, x) is control function, C(t, x) = C(t, x) or generally C(t, x) = C(t)D(x) in which C(t) is the con-

trol force function and D(t) is a function presenting the distribution of the control force, C(t, x) ∈ Cad in which Cad

is the set of admissible control functions and defined by Cad = {C(t, x)|C(t, x) ∈ L2(Ω), |C(t, x)| ≤ m < ∞}, m

is a constant. Eq. (1) is subject to the following initial conditions

ν(0, x) = ν0(x),
∂ν

∂t
(0, x) = ν1(x), (2)

in which ν0(x) ∈ H1(0, ℓ), H1(0, ℓ) = {u0(x) ∈ L2(0, ℓ) :
∂u0(x)

∂x
∈ L2(0, ℓ)}, ν1(x) ∈ L2(0, ℓ),

and L2(Ω) presents the Hilbert space of real-valued square-integrable functions defined in the domain Ω with

following inner product and norm given in the sense of Lebesque;

∥ ϕ ∥2=< ϕ, ϕ >, < ϕ, φ >Ω=

∫

Ω

ϕφdΩ.
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′

ρ
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in which ν0(x) ∈ H1(0, ℓ), H1(0, ℓ) = {u0(x) ∈ L2(0, ℓ) :
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∈ L2(0, ℓ)}, ν1(x) ∈ L2(0, ℓ),
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∥ ϕ ∥2=< ϕ, ϕ >, < ϕ, φ >Ω=

∫

Ω

ϕφdΩ.

Eq.(1) is subject to following non-homogeneous boundary conditions

ν(t, 0) = ζ1(t),
∂2ν

∂x2
(t, 0) = ζ2(t),

∂4ν

∂x4
(t, 0) = ζ3(t), ν(t, ℓ) = ζ4(t),

∂2ν

∂x2
(t, ℓ) = ζ5(t),

∂4ν

∂x4
(t, ℓ) = ζ6(t),

(3)

or

∂ν

∂x
(t, 0) = ξ1(t),

∂3ν

∂x3
(t, 0) = ξ2(t),

∂5ν

∂x5
(t, 0) = ξ3(t),

∂ν

∂x
(t, ℓ) = ξ4(t),

∂3ν

∂x3
(t, ℓ) = ξ5(t),

∂5ν

∂x5
(t, ℓ) = ξ6(t).

(4)

Let us make the following assumptions on the system;

(A1) ∂iν
∂ti

, ∂jν
∂xj ,

∂m+nν
∂xm∂tn

,∈ L2(Ω̄), Ω̄ is closure of Ω, i = 0, 1, 2 j = 0, 1, ..., 6, m, n = 0, 1, 2,

(A2) ζi(t), ξi(t) ∈ L2(Ω), i = 1, ..., 6.

Then, the system addressed by Eqs.(1)-(4) has a solution[27].

Lemma 1. The system called by Eqs.(1) -(4) has a unique solution.

Proof. Let us that ν1 and ν2 are two solutions to the system under the same conditions. Then the difference

u = ν1 − ν2 satisfies the following homogeneous initial conditions

u(x, t) = 0, ut(x, t) = 0 at t = 0 (5)

and boundary conditions

u(t, 0) = 0,
∂2u

∂x2
(t, 0) = 0,

∂4u

∂x4
(t, 0) = 0, u(t, ℓ) = 0,

∂2u

∂x2
(t, ℓ) = 0,

∂4u

∂x4
(t, ℓ) = 0, (6a)

or

∂u

∂x
(t, 0) = 0,

∂3u

∂x3
(t, 0) = 0,

∂5u

∂x5
(t, 0) = 0,

∂u

∂x
(t, ℓ) = 0,

∂3u

∂x3
(t, ℓ) = 0,

∂5u

∂x5
(t, ℓ) = 0, (6b)

and equation of motion becomes as follows;

uxx +
ℓ2

12
uxxxx +

ℓ4

36
uxxxxxx − 1

c2
utt +

1

c2
ℓ2

3

ρ′

ρ
uttxx = 0 (7)

Let us show that u is identically equal to zero. Then, introduce the following energy integral;

E(t) =
1

2

ℓ∫

0

{
∂2

∂x2
(u2) +

ℓ2

12

∂4

∂x4
(u2) +

ℓ4

36

∂6

∂x6
(u2)− 1

c2
(u2

t ) +
1

c2
ℓ2

3

ρ′

ρ

∂2

∂x2
(u2

t )

}
dx (8)

and show that E(t) is independent of t. Differentiating E(t) with respect to t, it is easy to see following equality;

dE(t)

dt
=

ℓ∫

0

{
∂2

∂x2
(uut) +

ℓ2

12
ℓ2

∂4

∂x4
(uut) +

ℓ4

36

∂6

∂x6
(uut)−

1

c2
(ututt) +

1

c2
ℓ2

3

ρ′

ρ

∂2

∂x2
(ututt)

}
dx (9)

Integrating by parts and using boundary conditions indicated by Eq.(6), Eq.(9) becomes

dE(t)

dt
=

ℓ∫

0

{
uxx +

ℓ2

12
uxxxx +

ℓ4

36
uxxxxxx − 1

c2
utt +

1

c2
ℓ2

3

ρ′

ρ
uttxx

}
utdx. (10)

Due to Eq.(7), following equality is observed

dE(t)

dt
= 0, that is E(t) = constant.

Regarding the conditions defined by Eq.(5), one obtains;

E(0) =
1

2

ℓ∫

0

{
∂2

∂x2
(u2) +

ℓ2

12

∂4

∂x4
(u2) +

ℓ4

36

∂6

∂x6
(u2)− 1

c2
(u2

t ) +
1

c2
ℓ2

3

ρ′

ρ

∂2

∂x2
(u2

t )

}����
t=0

dx = 0.

Hence, it becomes obviously that u(x, t) is zero, identically and u = ν1 − ν2 = 0 ⇒ ν1 = ν2. Namely, the system 
under consideration has a unique solution.
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By considering Lemma 1, it is concluded that for saving the uniqueness of the solution ν(x, t), corresponding

control function C(t, x) has to be unique. In this case, it is said that the system under consideration has a unique

solution ν(x, t) and a unique control function C(t, x). Then, system introduced Eqs.(1)-(4) is referred as observable.

Hilbert Uniqueness method indicates that observable is equivalent to controllable. As a conclusion, Eqs.(1)-(4) is

controllable [25, 26].

2 Optimal Control Problem

The main goal of the optimal control problem is to determine optimal control function C◦(t, x) ∈ Cad minimizing

the performance index functional at a given terminal time tf . The performance index functional of the system, is

consisted of a sum of modified energy of the beam and control effort used up in control duration, introduced as

follows;

J0(f(t, x)) =

ℓ∫

0

[G1(x, ν(tf , x)) + G2(x, νt(tf , x))]dx

+

tf∫

0

ℓ∫

0

G0(t, x, ν(t, x), C(t, x))dtdx.

(11)

Admissible control function C(t, x) subject to the Eqs.(1)-(2) and the following constraints

ℓ∫

0

h2(x, νt(tf , x)dx+

tf∫

0

ℓ∫

0

G−2(t, x, ν(t, x), C(t, x))dtdx = c−2, (12a)

ℓ∫

0

h1(x, ν(tf , x)dx+

tf∫

0

ℓ∫

0

G−1(t, x, ν(t, x), C(t, x))dxdt = c−1, (12b)

tf∫

0

ℓ∫

0

Gi(t, x, ν(t, x), C(t, x))dxdt ≤ ci, 1 ≤ i ≤ m, (12c)

tf∫

0

ℓ∫

0

Gi(t, x, ν(t, x), C(t, x))dxdt = ci, m < i ≤ M (12d)

in which, for i = −2,−1, 1, ...,M, h1, h2,G0,Gi are continuous functions of their all parameters. Also, h1,G0,Gi

for i = −2,−1, 1, ...,M are the functions having continuous derivation respect to ν. Also, h2,G2 are functions

having continuous derivation respect to νt. Suppose that C◦(t, x) is optimal control function with corresponding

to optimal displacement ν◦. By assuming (t1, x1), ..., (tP , xP ) are P arbitrary points in the open region Ω and

Cj(t, x), j = 1, ..., P are P arbitrary subfunctions of admissible control function C ∈ Cad. Also, let us assume

that x1 ≤ x2 ≤ ... ≤ xP . Let ς > 0 be for xi + Pς < xj if xi < xj , xP + Pς < ℓ and ti + ς < tf for each

0 ≤ i ≤ P. Let ε1, ..., εP be real parameters satisfying 0 ≤ εj ≤ ς2. Let X1 = x1 and Xj = xj +
√
ε1 + ...+

√
εj−1

be for 1 < j ≤ P . Hence, the intervals Xj ≤ x ≤ Xj +
√
εj and the rectangles Rj : [tj , tj +

√
εj ]× [Xj , Xj +

√
εj ]

do not have any intersection for 1 ≤ j ≤ P , respectively. ε denotes the vector (ε1, ..., εP ) ∈ RP , RP is a space in

the manner of P− dimensional Euclidean, and ε = |ε| = ε1 + ...+ εP . Control Cε(t, x) ∈ Ω̄ is defined by

Cε(t, x) =




C◦(t, x) if (t, x) /∈
P∪

j=1

Rj ,

C(t, x) if (t, x) ∈ Rj , j = 1, ..., P

(13)

3 Adjoint System and Optimality Conditions

Necessary requirement for optimality is obtained by means of maximum principle. Assuming by some convexity 
conditions on the constraints, maximum principle seems sufficient requirement for optimality. In order to con-
structing the maximum principle, an adjoint variable v(t, x) ∈ Ω∗, in which Ω∗ is the dual to Ω having same
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norm and inner product like in Ω, along the adjoint operator is defined. The v(t, x) satisfies the following adjoint

equation;

∂2v

∂x2
+

ℓ2

12

∂4v

∂x4
+

ℓ4

36

∂6v

∂x6
=

1

c2

(
∂2v

∂t2
− ℓ2

3

ρ
′

ρ

∂4v

∂t2∂x2

)
+

M∑
i=−2

λi
∂Gi

∂ν
(t, x, ν◦, C◦(t, x)), (14)

where λi ≤ 0 and Eq.(14) is subject to the following homogeneous boundary conditions

v(t, 0) = 0,
∂2v

∂x2
(t, 0) = 0,

∂4v

∂x4
(t, 0) = 0, v(t, ℓ) = 0,

∂2v

∂x2
(t, ℓ) = 0,

∂4v

∂x4
(t, ℓ) = 0, (15a)

or

∂v

∂x
(t, 0) = 0,

∂3v

∂x3
(t, 0) = 0,

∂5v

∂x5
(t, 0) = 0,

∂v

∂x
(t, ℓ) = 0,

∂3v

∂x3
(t, ℓ) = 0,

∂5v

∂x5
(t, ℓ) = 0, (15b)

and the terminal conditions

1

c2
ℓ2

3

ρ′

ρ
vtxx(t, x)−

1

c2
vt(t, x) = λ−1

∂h1

∂ν
(x, ν(t, x)) + λ0

∂G1

∂ν
(x, ν(t, x)) at t = tf (16a)

v(t, x) = −λ0
∂G2

∂νt
(x, νt(t, x))− λ−2

∂h2

∂νt
(x, νt(t, x)) at t = tf . (16b)

Existence and uniqueness of the solution corresponding to Eqs.(14)-(16) can be shown similarly to Eqs.(1)-(4).

Lemma 2. Let v and ∆ν(t, x) = ν(t, x)−ν◦(t, x) be two functions which are defined in L2(Ω). Also, let us assume

that v and ∆ν(t, x) satisfy Eqs.(14)-(16) and Eqs.(1)-(4), respectively. Then,

tf∫

0

ℓ∫

0

{
v[
∂2∆ν

∂x2
+

ℓ2

12

∂4∆ν

∂x4
+

ℓ4

36

∂6∆ν

∂x6
− 1

c2

(
∂2∆ν

∂t2
− ℓ2

3

ρ
′

ρ

∂4∆ν

∂t2∂x2

)
]

−∆ν[
∂2v

∂x2
+

ℓ2

12

∂4v

∂x4
+

ℓ4

36

∂6v

∂x6
− 1

c2

(
∂2v

∂t2
− ℓ2

3

ρ
′

ρ

∂4v

∂t2∂x2

)
]

}
dxdt

=

ℓ∫

0

{
v(tf , x)

ℓ2

3

ρ
′

ρ

1

c2
∆νtxx(tf , x)− vt(tf , x)

ℓ2

3

ρ
′

ρ

1

c2
∆νxx(tf , x)−

1

c2
∆νt(tf , x)v(tf , x) +

1

c2
vt(tf , x)∆ν(tf , x)

}
dx (17)

Proof. After applying the integration by parts to Eq.(17), it is easy to see the conclusion of lemma 2.

Definition 1. v is the solution of the system Eqs.(14)-(16) for the arbitrary constants λ−2, λ−1, λ0, ..., λM . Let

ν◦ and ν be the response functions corresponding to optimal control functions C◦ ∈ Cad, and for a fixed C ∈ Cad,

u be the any one of the following functions:

u(t, x) = Gi(t, x, ν, C(t, x)),

u(t, x) = Gi(t, x, ν
◦, C◦(t, x)),

u(t, x) = vC◦, C◦ ∈ Cad,

u(t, x) = vC, C ∈ Cad is fixed .

A point (t̄, x̄) is named regular point for C ∈ Cad if it meets the following equality for any sufficiently small ε > 0

t̄+
√

ε∫

t̄

x̄+
√
ε∫

x̄

u(t, x)dxdt = εu(t̄, x̄) + o(ε).

By considering [23], it is reveals that all points of [0, tf ]× [0, ℓ] are regular for each C ∈ Cad.

Let J and Z indicate the vector valued functional (J−2,J−1,J0, ...,JM ) and the set

Z = {J (C) : C ∈ Cad} ⊂ RM+3.
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Definition 2. If a surface exists in the following form

Jε = J (C◦) +

P∑
j=1

djεj + o(ε)

in Z for sufficiently small εj and d1, ..., dP is any finite collection of vectors from D, then set D is called as a

derived set of the set Z at J (C◦) [24].

Lemma 3. Assume that the points (ti, xi) are regular points in Ω for i = 1, 2, ..., P . Let us introduce the J̄ (C)
for any C ∈ Cad as follows;

J̄ (C) =
ℓ∫

0

{
λ0[G1(x, ν(tf , x)) + G2(x, νt(tf , x))]

+[λ−2h2(x, νt(tf , x)) + λ−1h1(x, ν(tf , x))]

}
dx

+

tf∫

0

ℓ∫

0

M∑
i=−2

[
λiGi(t, x, ν, C))

]
dtdx

If P = 1, for C ∈ Cad, there exist constants λ−2, λ−1, λ0, ...., λM (not all zero) such that

λ0 ≤ 0, λi ≤ 0 (0 ≤ i ≤ m), lim
ε→0+

J̄ (Cε)− J̄ (C◦)

ε
≤ 0

where C◦’s and Cε’s are functions introduced in Eq.(13).

Proof. Define the functionals J−2,J−1,J1, ...,JM on the class of admissible controls by

J−2(C) =
ℓ∫

0

h2(x, νt(tf , x))dx+

tf∫

0

ℓ∫

0

G−2(t, x, ν, C)dxdt,

J−1(C) =
ℓ∫

0

h1(x, νt(tf , x))dx+

tf∫

0

ℓ∫

0

G−1(t, x, ν, C)dxdt,

Ji(C) =
tf∫

0

ℓ∫

0

Gi(t, x, ν, C)dxdt, i = 1, ...,M.

For employing Lagrange multipliers, we need to construct a derived set D for the set Z at J (C◦) [24]. Now let us

define the functions vj for j = −2,−1, 1, ...,M which are supplying the following conditions:

∂2vj
∂x2

+
ℓ2

12

∂4vj
∂x4

+
ℓ4

36

∂6vj
∂x6

=
1

c2

(
∂2vj
∂t2

− ℓ2

3

ρ
′

ρ

∂4vj
∂t2∂x2

)
+ λj

∂Gj

∂ν
(t, x, ν◦, C◦(t, x)) (18)

where λi ≤ 0, 0 ≤ t ≤ tf , 0 ≤ x ≤ ℓ and Eq.(18) is subject to the following boundary conditions

vj(t, 0) = 0,
∂2vj
∂x2

(t, 0) = 0,
∂4vj
∂x4

(t, 0) = 0, vj(t, ℓ) = 0,
∂2vj
∂x2

(t, ℓ) = 0,
∂4vj
∂x4

(t, ℓ) = 0 (19a)

or

∂vj
∂x

(t, 0) = 0,
∂3vj
∂x3

(t, 0) = 0, ,
∂5vj
∂x5

(t, 0) = 0,
∂vj
∂x

(t, ℓ) = 0,
∂3vj
∂x3

(t, ℓ) = 0,
∂5vj
∂x5

(t, ℓ) = 0, −2 ≤ j ≤ M

(19b)

and the terminal conditions

vj(tf , x) = 0,
1

c2
ℓ2

3

ρ′

ρ

∂3

∂t∂x2
vj(tf , x)−

1

c2
∂

∂t
vj(tf , x) = 0 for i = 1, ..,M. (20a)

v−2(tf , x) = −λ−2
∂h2

∂νt
(x, νt(tf , x)),

1

c2
ℓ2

3

ρ′

ρ

∂3

∂t∂x2
v−2(tf , x)−

1

c2
∂

∂t
v−2(tf , x) = 0, (20b)
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Lemma 3. Assume that the points (ti, xi) are regular points in Ω for i = 1, 2, ..., P . Let us introduce the J̄ (C)
for any C ∈ Cad as follows;

J̄ (C) =
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+

tf∫

0

ℓ∫

0

M∑
i=−2

[
λiGi(t, x, ν, C))

]
dtdx

If P = 1, for C ∈ Cad, there exist constants λ−2, λ−1, λ0, ...., λM (not all zero) such that

λ0 ≤ 0, λi ≤ 0 (0 ≤ i ≤ m), lim
ε→0+

J̄ (Cε)− J̄ (C◦)

ε
≤ 0

where C◦’s and Cε’s are functions introduced in Eq.(13).

Proof. Define the functionals J−2,J−1,J1, ...,JM on the class of admissible controls by

J−2(C) =
ℓ∫

0

h2(x, νt(tf , x))dx+

tf∫

0

ℓ∫

0

G−2(t, x, ν, C)dxdt,

J−1(C) =
ℓ∫

0

h1(x, νt(tf , x))dx+

tf∫

0

ℓ∫

0

G−1(t, x, ν, C)dxdt,

Ji(C) =
tf∫

0

ℓ∫

0

Gi(t, x, ν, C)dxdt, i = 1, ...,M.

For employing Lagrange multipliers, we need to construct a derived set D for the set Z at J (C◦) [24]. Now let us

define the functions vj for j = −2,−1, 1, ...,M which are supplying the following conditions:

∂2vj
∂x2

+
ℓ2

12

∂4vj
∂x4

+
ℓ4

36

∂6vj
∂x6

=
1

c2

(
∂2vj
∂t2

− ℓ2

3

ρ
′

ρ

∂4vj
∂t2∂x2

)
+ λj

∂Gj

∂ν
(t, x, ν◦, C◦(t, x)) (18)

where λi ≤ 0, 0 ≤ t ≤ tf , 0 ≤ x ≤ ℓ and Eq.(18) is subject to the following boundary conditions

vj(t, 0) = 0,
∂2vj
∂x2

(t, 0) = 0,
∂4vj
∂x4

(t, 0) = 0, vj(t, ℓ) = 0,
∂2vj
∂x2

(t, ℓ) = 0,
∂4vj
∂x4

(t, ℓ) = 0 (19a)

or

∂vj
∂x

(t, 0) = 0,
∂3vj
∂x3

(t, 0) = 0, ,
∂5vj
∂x5

(t, 0) = 0,
∂vj
∂x

(t, ℓ) = 0,
∂3vj
∂x3

(t, ℓ) = 0,
∂5vj
∂x5

(t, ℓ) = 0, −2 ≤ j ≤ M

(19b)

and the terminal conditions

vj(tf , x) = 0,
1

c2
ℓ2

3

ρ′

ρ

∂3

∂t∂x2
vj(tf , x)−

1

c2
∂

∂t
vj(tf , x) = 0 for i = 1, ..,M. (20a)

v−2(tf , x) = −λ−2
∂h2

∂νt
(x, νt(tf , x)),

1

c2
ℓ2

3

ρ′

ρ

∂3

∂t∂x2
v−2(tf , x)−

1

c2
∂

∂t
v−2(tf , x) = 0, (20b)

v−1(tf , x) = 0,
1

c2
ℓ2

3

ρ′

ρ

∂3

∂t∂x2
v−1(tf , x)−

1

c2
∂

∂t
v−1(tf , x) = λ−1

∂h1

∂ν
(x, ν(tf , x)) (20c)

v0(tf , x) = −λ0
∂G2

∂νt
(x, νt(tf , x)), (20d)

1

c2
ℓ2

3

ρ′

ρ

∂3

∂t∂x2
v0(tf , x)−

1

c2
∂

∂t
v0(tf , x) = λ0

∂G1

∂ν
(x, ν(tf , x)).

For each point (t, x) ∈ (0, tf )× (0, ℓ), i = −2,−1, 0, ...,M, di(t, x, C̄) is defined as follows

di(t, x, C̄) = vi(t, x)(C̄ − C◦) + Gi(t, x, ν
◦(t, x), C̄)− Gi(t, x, ν

◦(t, x), C◦). (21)

Now we shall show that the set

D = {d|d = (d−2(t, x, C̄), ..., dM (t, x, C̄)), (t, x) a regular point of C◦, C̄ ∈ Cad}

is derived set for Z at J (C◦). Let d1, d2, ..., dP be an arbitrary finite collection of vectors from D. We must show

that there exist points Jε ∈ Z depending continuously on the vector parameter ε = (ε1, ..., εP ) for all sufficiently

small positives values of ε such that

Jε = J (C◦) +
P∑

j=1

djεj + o(ε).

Since dj ∈ D, j = 1, ..., P, there exist (t1, x1), ..., (tP , xP ) regularity points of C◦ and subfunctions C1, ..., CP ∈
Cad such that

dj = (d−2(tj , xj , Cj), ..., d
M (tj , xj , Cj)), j = 1, ..., P.

We shall show that Jε can be defined by Jε = J (Cε) where Cε is the admissible control defined in Eq.(13). Then,

for i = 1, ...,M

Ji(Cε)− Ji(C◦) =

tf∫

0

ℓ∫

0

[Gi(t, x, νε(t, x), Cε(t, x))− Gi(t, x, ν
◦(t, x), C◦(t, x))]dtdx

=

tf∫

0

ℓ∫

0

[Gi(t, x, νε(t, x), Cε(t, x))− Gi(t, x, ν
◦(t, x), Cε(t, x))]dtdx

+

tf∫

0

ℓ∫

0

[Gi(t, x, ν
◦(t, x), Cε(t, x))− Gi(t, x, ν

◦(t, x), C◦(t, x))]dtdx

(22)

=

tf∫

0

ℓ∫

0

∂Gi

∂ν
(t, x, ν◦, C◦(t, x))∆ν(x, t)dtdx+

P∑
j=1

εj [Gi(tj , xj , ν
◦(tj , xj), Cj)

−Gi(tj , xj , ν
◦(tj , xj), C◦

j (tj , xj))] +
P∑

j=1

o(εj).

(23)

For obtaining Eq.(23), we employ that C◦ is regular in Ω. After employing following equality in Eq.(17)

Mvi =
∂Gi

∂ν
(t, x, ν◦(t, x), C◦), i = 1, ...,M, k = 1, ..., N

it is observed that

ℓ∫

0

tf∫

0

∆ν(t, x)Mvidtdx =

ℓ∫

0

tf∫

0

vi(t, x)(Cε(t, x)− C◦(t, x))

=

P∑
j=1

εjvi(tj , xj)(Cj − C◦
j (tj , xj)) + o(ε).
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By means of Eq.(21) and Eq.(23), we can write

Ji(Cε) = Ji(C◦) +

P∑
j=1

dijεj + o(ε), i = 1, ...,M, (24)

where dij denotes the ith component of dj . For i = 0, we have

J0(Cε)− J0(C◦) =

ℓ∫

0

[
∂G1

∂ν
(x, ν◦(tf , x))∆ν(tf , x) +

∂G2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)]dx

+

P∑
j=1

εj [G0(tj , xj , νε(tj , xj), Cj)− G0(tj , xj , νε(tj , xj), C◦
j )]

+

ℓ∫

0

tf∫

0

(Mv0)∆ν(t, x)dtdx+ o(ε). (25)

in which J0 =
ℓ∫
0

[G1(x, ν(tf , x)) + G2(x, νt(tf , x))]dx +
tf∫
0

ℓ∫
0

G0(t, x, ν, C)dtdx. Considering Eq.(17) and Eq.(18), it

is observed that

tf∫

0

ℓ∫

0

∆ν(t, x)Mv0dtdx =

tf∫

0

ℓ∫

0

v0(t, x)(Cε(t, x)− f◦(t, x))dtdx

−
ℓ∫

0

[
∂G1

∂ν
(x, ν◦(tf , x))∆ν(tf , x) +

∂G2

∂νt
(x, νt(tf , x))∆νt(tf , x)

]
. (26)

If Eq.(26) is substituted into Eq.(25), Eq.(24) is obtained for i = 0. For i = −2,−1, Eq.(24) can be obtained by

using Eqs.(17)-(18). By definition J , following equality is obtained

J (Cε)− J (C◦) =

P∑
j=1

djεj + o(ε).

If Jε is defined as J (Cε), it follows that D is a derived set for Z at J (C◦). So, there exist lagrange multipliers

[24] that λ−2, λ−1, λ0, ..., λM and λi ≤ 0 for 0 ≤ i ≤ m and some λi ̸= 0, such that

M∑
i=−2

λid
i ≤ 0 (27)

for any vector d = (d−2, d−1, d0, ..., dM ) in D. For attaining conclusion of Lemma 3, take into account P = 1

and consider

J̄ =

M∑
i=−2

λiJi.

By Eq.(24), we have following equality

J̄ (Cε)− J̄ (C◦) = ε

M∑
i=−2

λid
i + o(ε)

for any d = (d−2, d−1, d0, ..., dM ) in D. Then, we obtain the proof of Lemma 3 as follows:

lim
ε→0+

J̄ (Cε)− J̄ (C◦)

ε
=

M∑
i=−2

λid
i ≤ 0.
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tf∫

0
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using Eqs.(17)-(18). By definition J , following equality is obtained

J (Cε)− J (C◦) =

P∑
j=1

djεj + o(ε).

If Jε is defined as J (Cε), it follows that D is a derived set for Z at J (C◦). So, there exist lagrange multipliers

[24] that λ−2, λ−1, λ0, ..., λM and λi ≤ 0 for 0 ≤ i ≤ m and some λi ̸= 0, such that

M∑
i=−2

λid
i ≤ 0 (27)

for any vector d = (d−2, d−1, d0, ..., dM ) in D. For attaining conclusion of Lemma 3, take into account P = 1

and consider

J̄ =

M∑
i=−2

λiJi.

By Eq.(24), we have following equality

J̄ (Cε)− J̄ (C◦) = ε

M∑
i=−2

λid
i + o(ε)

for any d = (d−2, d−1, d0, ..., dM ) in D. Then, we obtain the proof of Lemma 3 as follows:

lim
ε→0+

J̄ (Cε)− J̄ (C◦)

ε
=

M∑
i=−2

λid
i ≤ 0.

Theorem 1. [Maximum Principle] For the optimal control functions C◦(t, x) ∈ Cad, the corresponding optimal

state and adjoint variables are let ν◦(t, x) = ν(t, x, C◦) satisfying Eqs.(1)-(4) and v◦(t, x) = v(t, x, C◦(t, x)) satis-

fying Eq.(14), boundary conditions Eq.(15) and terminal conditions Eq.(16), respectively. The maximum principle

states that if

H[t, x, v◦, C◦(t, x)] = max
C∈Cad

H[t, x, v, C(t, x)] (28)

where the Hamiltonian is given by

H[t, x, v, C(t, x)] = v(t, x)C +

M∑
i=−2

λiGi(t, x, ν(t, x), C) (29)

then the performance index Eq.(11) is minimized, i.e.,

J0[C◦(t, x)] ≤ J0[C(t, x)] for any C ∈ Cad. (30)

Proof. By Lemma 3 and Lagrange multipliers 0 ≤ i ≤ m, λi ̸= 0 and λ−2, λ−1, λ0, ..., λM independent of (t, x)

with λi ≤ 0 such that

M∑
i=−2

λi[vi(t, x)(C − C◦(t, x)) + Gi(t, x, ν(t, x), C)− Gi(t, x, ν
◦(t, x), C◦(t, x))] ≤ 0 (31)

for any function C ∈ Cad. Note that the term in Eq.(31)

M∑
i=−2

λi[vi(t, x)C + Gi(t, x, ν(t, x), C)] (32)

obtains its maximum value at C = C◦(t, x) ∈ Cad. Take into account the first term in Eq.(32),

M∑
i=−2

λivi(t, x)C.

If we define v =
M∑

i=−2

λivi(t, x), we obtain

v(t, x)C +
M∑

i=−2

λiGi(t, x, ν(t, x), C).

Hence, Theorem 1 is proofed.

Theorem 2. Take into account the system Eqs.(1)-(2) and Eqs.(11)-(12). Let the functions Gi in the following

form

Gi(t, x, ν, C) = Gi(t, x, ν) +Hi(t, x, C), i = −2,−1, 0, ...,M

and v satisfying Eqs.(14)-(16) be the nonzero solution of

Mv =
M∑

i=−2

λi
∂Gi(t, x, ν◦(t, x))

∂ν
.

Assume presence of admissible control function C◦ with the λ0, λi, i = −2,−1, 1, ...,M, that satisfy the maximum

principle Eq.(28). Let followings are assumed:

a) G1, h1,G3, ...,Gm are convex respect to ν and G2, h2 are convex respect to νt;

b) λ0 < 0, λi ≤ 0 for i = −1, ...,m;.

c) the constraints Eq.(12) are satisfied by C◦;

d) If the strict inequality holds in Eq.(12), the corresponding Lagrange multiplier λi = 0;

e) −λiG
i,−λ−1h1 are convex functions of ν and −λ−2h2 is convex functions of νt for m < i < M.
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In presence of above requirements, maximum principle introduced by Eq.(28) is sufficient requirement for C◦ to be

optimal. Requirement (d) is indicated in [24]. In case h1, h2, Gi,m < i ≤ M are linear function, requirement (e)

is proved.

Proof. If Eq.(12) is satisfied by C, ν , then by condition (d),

tf∫

0

ℓ∫

0

λi

[
Gi(t, x, ν)−Gi(t, x, ν◦)

]
dxdt+

tf∫

0

ℓ∫

0

λi

[
Hi(t, x, C)−Hi(t, x, C◦)

]
dtdx = 0

for i = −2,−1, ...,M Then, following inequality can be written;

−λ0[J0(C)− J0(C◦)] ≥

−
ℓ∫

0

λ0[G2(x, νt(tf , x))− G2(x, ν
◦
t (tf , x)) + G1(x, ν(tf , x))− G1(x, ν

◦(tf , x))]dx

−

tf∫

0

ℓ∫

0

M∑
i=−2

λi

{
Gi(t, x, ν(t, x))−Gi(t, x, ν◦(t, x))

−[Hi(t, x, C(t, x))−Hi(t, x, C◦(t, x))]

}
dxdt

−
ℓ∫

0

λ−1

[
h1(x, ν(tf , x))− h1(x, ν

◦(tf , x))

]
dx

−
ℓ∫

0

λ−2

[
h2(x, νt(tf , x))− h2(x, ν

◦
t (tf , x))

]
dx.

Using convexity assumption (e),

−λ0[J0(C)− J0(C◦)] ≥

−
ℓ∫

0

λ0

[
∂G1

∂ν
(x, ν◦(tf , x)∆ν(tf , x)) +

∂G2

∂νt
(x, ν◦

t (tf , x)∆νt(tf , x))

]
dx

−

tf∫

0

ℓ∫

0

M∑
i=−2

λi
∂Gi

∂ν
(t, x, ν◦(t, x))∆ν(t, x)dtdx

+

tf∫

0

ℓ∫

0

M∑
i=−2

λi[H
i(t, x, C◦(t, x))−Hi(t, x, C(t, x))]dtdx

−
ℓ∫

0

λ−1
∂h1

∂ν
(x, ν◦(tf , x))∆ν(tf , x)dx−

ℓ∫

0

λ−2
∂h2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)dx

= −
ℓ∫

0

λ0

[
∂G1

∂ν
(x, ν◦(tf , x))∆ν(tf , x) +

∂G2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)dx

]
dx

−

tf∫

0

ℓ∫

0

(Mv)∆ν(t, x)dxdt+

tf∫

0

ℓ∫

0

M∑
i=−2

λi[H
i(t, x, f◦(t, x))−Hi(t, x, f(t, x))]dtdx

−
ℓ∫

0

[
λ−1

∂h1

∂ν
(x, ν◦(tf , x))∆ν(tf , x) + λ−2

∂h2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)

]
dx
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In presence of above requirements, maximum principle introduced by Eq.(28) is sufficient requirement for C◦ to be
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(x, ν◦
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]
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−

tf∫

0

ℓ∫

0

M∑
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λi
∂Gi

∂ν
(t, x, ν◦(t, x))∆ν(t, x)dtdx

+

tf∫

0

ℓ∫

0

M∑
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λi[H
i(t, x, C◦(t, x))−Hi(t, x, C(t, x))]dtdx
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ℓ∫

0

λ−1
∂h1

∂ν
(x, ν◦(tf , x))∆ν(tf , x)dx−

ℓ∫

0

λ−2
∂h2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)dx

= −
ℓ∫

0

λ0

[
∂G1

∂ν
(x, ν◦(tf , x))∆ν(tf , x) +

∂G2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)dx
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−

tf∫

0

ℓ∫

0

(Mv)∆ν(t, x)dxdt+

tf∫

0

ℓ∫

0

M∑
i=−2

λi[H
i(t, x, f◦(t, x))−Hi(t, x, f(t, x))]dtdx

−
ℓ∫

0

[
λ−1

∂h1

∂ν
(x, ν◦(tf , x))∆ν(tf , x) + λ−2

∂h2

∂νt
(x, ν◦

t (tf , x))∆νt(tf , x)

]
dx

And finally employing the Lemma 2 and Eqs.(19)-(20), we obtain

−λ0[J0(C)− J0(C◦)] ≥
tf∫

0

ℓ∫

0

{
v(t, x)[C◦(t, x)− C(t, x)]

+

M∑
i=−2

λi[H
i(t, x, C◦(t, x))−Hi(t, x, C(t, x))]

}
dxdt (33)

Take into consideration that above inequality given by Eq.(33) is nonnegative because of requirement (b). Hence,

following inequality is obtained

J0(C(t, x))− J0(C◦(t, x)) ≥ 0 (34)

Hence, the proof of Theorem 2 is completed and it is concluded that for a global minimum of the performance

index functional Eq.(11), the maximum principle is also a sufficient condition.

4 Numerical Example and Discussion

Let us consider a homogeneous beam system including central host layer and two patches, whom edges are parallel

to edge of the beam, perfectly bounded on the both side of the beam. At the beginning of the control duration,

the beam is undeformed and at rest. The beam is exposed to external excitation force, which alerts the vibrations

in the beam. By following obtained theoretical results in previous sections, the goal of this example is to find the

minimum level of voltage to be applied to the piezoelectric patch actuators for suppressing undesirable vibrations

in the beam optimally.
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Figure 1: Cross section of the beam

The mathematical model of the beam system, described by Fig.(1), is given as follows;

∂2ν

∂x2
+

ℓ2

12

∂4ν

∂x4
+

ℓ4

36

∂6ν

∂x6
=

1

c2

(
∂2ν

∂t2
− ℓ2

3

ρ
′

ρ

∂4ν

∂t2∂x2

)
+ f(t, x) + C(t, x) (35)

where C(t, x) = C(t)[H ′′(x−x1)−H ′′(x−x2)] in which C(t) is the optimal control voltage function, H is heavy-side

function and x1 and x2 are the locations of piezoelectric patch actuators. The Eq.(35) is subjected to following

homogeneous boundary conditions;

ν(t, 0) = 0,
∂2ν

∂x2
(t, 0) = 0,

∂4ν

∂x4
(t, 0) = 0, ν(t, ℓ) = 0,

∂2ν

∂x2
(t, ℓ) = 0,

∂4ν

∂x4
(t, ℓ) = 0, (36)

or
∂ν

∂x
(t, 0) = 0,

∂3ν

∂x3
(t, 0) = 0,

∂5ν

∂x5
(t, 0) = 0,

∂ν

∂x
(t, ℓ) = 0,

∂3ν

∂x3
(t, ℓ) = 0,

∂5ν

∂x5
(t, ℓ) = 0 (37)

and initial conditions;

ν(0, x) = ν0(x),
∂ν

∂t
(0, x) = ν1(x). (38)
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Also, the performance index functional, to be minimized at predetermined terminal time, of the system is defined

as follows;

J (C) =

ℓ∫

0

[λ1ν
2(tf , x) + λ2ν

2
t (tf , x)]dx+ λ3

tf∫

0

C2(t)dt (39)

in which the first integral at the left hand-side is the modified kinetic energy of the beam system which includes

the weighted quadratical functional of the displacement and velocity of a point on the beam. Second integral is

the weighted quadratical functional of the voltage energy to be applied to the piezoelectric patch actuator on the

beam system. By following the theoretical results in the previous section, the aim of this section is to optimally

determine the C(t), which satisfies the Eqs.(35)-(38) and minimizes the Eq.(39) in the control duration. In order

to obtain the optimality for the beam system defined by Eqs.(35)-(38), let us define the adjoint system as follows;

∂2v

∂x2
+

ℓ2

12

∂4v

∂x4
+

ℓ4

36

∂6v

∂x6
=

1

c2

(
∂2v

∂t2
− ℓ2

3

ρ
′

ρ

∂4v

∂t2∂x2

)
. (40)

Eq.(40) is subject to the following homogeneous boundary conditions;

v(t, 0) = 0,
∂2v

∂x2
(t, 0) = 0,

∂4v

∂x4
(t, 0) = 0, v(t, ℓ) = 0,

∂2v

∂x2
(t, ℓ) = 0,

∂4v

∂x4
(t, ℓ) = 0, (41a)

or

∂v

∂x
(t, 0) = 0,

∂3v

∂x3
(t, 0) = 0,

∂5v

∂x5
(t, 0) = 0,

∂v

∂x
(t, ℓ) = 0,

∂3v

∂x3
(t, ℓ) = 0,

∂5v

∂x5
(t, ℓ) = 0, (41b)

and following terminal conditions;

1

c2
[
ℓ2

3

ρ′

ρ
vtxx(t, x)− vt(t, x)] = 2λ1ν(t, x) at t = tf (42a)

v(t, x) = −2λ2νt(t, x) at t = tf . (42b)

In the light of obtained theoretical results from previously sections, necessary and sufficient optimality conditions

in the form of maximum principle is obtained as follows;

If H[t, x1, x2; v
◦, C◦] = max

C∈Cad

H[t, x1, x2; v, C] (43)

in which the Hamiltonian is defined by the equation

H[t, x1, x2; v, C] = [vx(t, x2)− vx(t, x1]C(t)− λ3C
2(t) (44)

then,

J [C◦] = min
C∈Cad

J [C], C ∈ Cad. (45)

Hence, optimal control voltage function is obtained as follows;

C(t) =
vx(t, x2)− vx(t, x1)

2λ3
. (46)

The solution of the system defined by Eqs.(35)-(46) is achieved by means of MATLAB. Before discussing the

numerical results, note that λ3 is on the control function given by Eq.(46). The value of λ3 on the control

function increases, the value of control force defined by C(t) decreases. By adjusting the optimal value of λ3,

optimal control voltage C(t) is determined. In the numerical computations, λ1 = λ2 = 1, and λ3 is evaluated as

10−3 and 103 for controlled and uncontrolled situations, respectively. Also, initial conditions are taken into account

as ν0(x) =
√
2 sin(πx) and ν1(x) =

√
2 sin(πx). Also, the external excitation function f(t, x) = e−t(1 − x). The

predetermined terminal time is fixed as tf = 5 and length of the beam is ℓ = 1. The location of the patch on the 
beam is considered as x1 = 0.4 and x2 = 0.6. The values of the displacements and velocity in the performance index 
functional defined by Eq.(39), is calculated at the x = 0.5, which is the middle point of the beam. The Young’s 
modulus E is 2 × 107 and the line density of the beam ρ is 6 × 104. Controlled and uncontrolled displacements of
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and following terminal conditions;

1
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3

ρ′

ρ
vtxx(t, x)− vt(t, x)] = 2λ1ν(t, x) at t = tf (42a)

v(t, x) = −2λ2νt(t, x) at t = tf . (42b)

In the light of obtained theoretical results from previously sections, necessary and sufficient optimality conditions

in the form of maximum principle is obtained as follows;
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The solution of the system defined by Eqs.(35)-(46) is achieved by means of MATLAB. Before discussing the

numerical results, note that λ3 is on the control function given by Eq.(46). The value of λ3 on the control

function increases, the value of control force defined by C(t) decreases. By adjusting the optimal value of λ3,
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the beam, subjected to external excitation, are plotted in Fig.2. By observing the Fig.(2), it is concluded that the

vibrations in the beam is effectively suppressed as a conclusion of the optimal vibration control. Same observation

is also valid for the controlled and uncontrolled velocities of the vibrations on the beam, which are plotted in

Fig.(3).

Let us define the dynamic response functional of the beam as J (ν) by considering λ1 = λ2 = 1 and λ3 = 0

in Eq.(39). Also, define the accumulated control voltage functional as J (C) by evaluating the λ1 = λ2 = 0 and

λ3 = 1 Eq.(39). By taking into account the Table1, it is concluded that the value of λ3 decreases on the optimal

Table 1: The values of J (ν) and J (C) for different values of λ3.

ϑ3 J (w) J (V)

103 3 e-5 5.2 e-10

100 9 e-8 2 e-6

10−3 1.5 e-13 6 e-6

control function, dynamic response of the beam is decreases due to increment on the value of the optimal control

force applied to piezoelectric patch actuator on beam. These observation reveal that introduced necessary and

sufficient conditions in the form of maximum principle are ideal for optimality.

5 Conclusion

In this paper, optimality conditions of a hyperbolic beam equation based on Mindlin’s gradient elasticity theory

is studied. The system under consideration is subjected to external excitation function and nonhomogeneous

boundary conditions. Also, the system has some equalities/inequalities constraints on control function and state

variable. For obtaining optimality conditions of the system, existence and uniqueness of the solution to beam

equation is proved by using energy-integral method and controllability of the system is discussed. Necessary and

sufficient optimality conditions are derived in the form of a maximum principle. A numerical example is presented

and results given by table and graphics indicate that derived conditions for a beam model based on Mindlin’s

gradient elasticity theory are necessary and sufficient for optimality.

6 Author Contribution

KY completed this study and wrote the manuscript. KY read and approved the final manuscript.

7 Funding Information

There are no funders to report for this submission.

8 Conflicts of Interest

This work does not have any conflicts of interest

References

[1] Cosserat, E., Cosserat, F., 1909. Theorie des Corps Deformables. Cornell UniversityLibrary.

[2] Gazis, D.C., Herman, R., Wallis, R.F., 1960. Surface elastic waves in cubic crystals.Phys. Rev. 119, 533544.

150 | Optimality Conditions of a Hyperbolic Beam Equation based on Mindlin’s Gradient Elasticity...



the beam, subjected to external excitation, are plotted in Fig.2. By observing the Fig.(2), it is concluded that the

vibrations in the beam is effectively suppressed as a conclusion of the optimal vibration control. Same observation

is also valid for the controlled and uncontrolled velocities of the vibrations on the beam, which are plotted in

Fig.(3).

Let us define the dynamic response functional of the beam as J (ν) by considering λ1 = λ2 = 1 and λ3 = 0

in Eq.(39). Also, define the accumulated control voltage functional as J (C) by evaluating the λ1 = λ2 = 0 and

λ3 = 1 Eq.(39). By taking into account the Table1, it is concluded that the value of λ3 decreases on the optimal

Table 1: The values of J (ν) and J (C) for different values of λ3.

ϑ3 J (w) J (V)

103 3 e-5 5.2 e-10

100 9 e-8 2 e-6

10−3 1.5 e-13 6 e-6

control function, dynamic response of the beam is decreases due to increment on the value of the optimal control

force applied to piezoelectric patch actuator on beam. These observation reveal that introduced necessary and

sufficient conditions in the form of maximum principle are ideal for optimality.

5 Conclusion

In this paper, optimality conditions of a hyperbolic beam equation based on Mindlin’s gradient elasticity theory

is studied. The system under consideration is subjected to external excitation function and nonhomogeneous

boundary conditions. Also, the system has some equalities/inequalities constraints on control function and state

variable. For obtaining optimality conditions of the system, existence and uniqueness of the solution to beam

equation is proved by using energy-integral method and controllability of the system is discussed. Necessary and

sufficient optimality conditions are derived in the form of a maximum principle. A numerical example is presented

and results given by table and graphics indicate that derived conditions for a beam model based on Mindlin’s

gradient elasticity theory are necessary and sufficient for optimality.

6 Author Contribution

KY completed this study and wrote the manuscript. KY read and approved the final manuscript.

7 Funding Information

There are no funders to report for this submission.

8 Conflicts of Interest

This work does not have any conflicts of interest

References

[1] Cosserat, E., Cosserat, F., 1909. Theorie des Corps Deformables. Cornell UniversityLibrary.

[2] Gazis, D.C., Herman, R., Wallis, R.F., 1960. Surface elastic waves in cubic crystals.Phys. Rev. 119, 533544.

[3] Gazis, D.C., Wallis, R.F., 1964. Surface tention and surface modes in semi-infinitelattices. Surface Sci. 3,

1932.

[4] Green, A.E., Rivlin, R.S., 1964. Multipolar continuum mechanics. Arch. Ration. Mech.Anal. 17, 113147.

[5] Koiter, W.T., 1964. Couple stress in the theory of elasticity III. Proc. Kon. Nederl.Akad. Wetensch. B 67,

1744, 196.

[6] Lanczos, C., 1970. The Variational Principles of Mechanics. University of TorontoPress, Toronto.

[7] Mindlin, R.D., Tiersten, H.F., 1962. Effects of couple stresses in linear elasticity. Arch.Rat. Mech. Anal. 11,

415448.

[8] Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16,5178.

[9] Mindlin, R.D., 1965 . On the equations of elastic materials with micro-structure. Int.J. Solids Struct. 1, 7378.

[10] Mindlin, R.D., 1965. Second gradient of strain and surface-tension in linearelasticity. Int. J. Solids Struct. 1,

417438.

[11] Tiersten, H.F., Bleustein, J.L., 1974. Generalized elastic continua. In: Herrmann, G.(Ed.), R.D. Mindlin and

Applied Mechanics. Rergamon Press, New York, pp. 67103.

[12] Berkani, A., Tatar, N., Stabilization of a viscoelastic Timoshenko beam fixed into a moving base, Math.

Modelling Nat. Phenomena, 14, 501, 2019.

[13] Polyzos, D., Fotiadis, D. I., Derivation of Mindlin’s first and second strain gradient elastic theory via simple

lattice and continuum models, Int J. Solid and Struc., 49, 470-480,2012.

[14] Pontryagin, L. S., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E., The mathematical theory of optimal

control processes, L. W. Neustadt, ed., interscience, New-York, 1962.

[15] Egorov, A. I., Necessary optimality conditions for distributed parameter systems, SIAM Journal on Control,

5, 352-408, 1967.

[16] Barnes, E. A., Necessary and sufficient optimality conditions for a class of distributed parameter control

systems, SIAM Journal on Control, 9(1), 62-82, 1971.

[17] Lee, E. B., A sufficient condition in the theory of optimal control, SIAM Journal on Control, 1, 241-245,

1963.

[18] Russell, D. L., Optimal regulation of linear symmetric hyperbolic systems with infinite dimensional con-

trols,SIAM Journal of Control,4, 276-295, 1966.

[19] Komkov, V., The optimal control of a transverse vibration of a beam, SIAM Journal of Control,6, 401-421,

1968.

[20] Yildirim, K., Active control of an improved Boussinesq system, Math. Modelling Nat. Phenomena, 15, 2020.

[21] Kucuk, I., Yildirim, K., Necessary and Sufficient Conditions of Optimality for a Damped Hyperbolic Equation

in One-Space Dimension, Abstract and Applied Analysis, 2014, ID 493130, 2014.

[22] Sadek, I., Necessary and sufficient conditions for the optimal control of distributed parameter systems subject

to integral constraints, J. Franklin Ins., 325(5), 565-583, 1988.

[23] Saks, S., Theory of the Integral, Hafner, New York, 1937.

[24] Hestenes, M., Calculus of variation and Optimal Control Theory, John Wiley, New York, 1966.

[25] Guliyev, H. F., Jabbarova, K. S. (2010). The exact controllability problem for the second order linear hyper-

bolic equation, Differential Equations and Control Processes, N3.

[26] Pedersen, M., Functional Analysis in Applied Mathematics and Engineering , CRC Press, 2018.

[27] Zachmaonoglou, E. C., Thoe, D. W., Intoduction to Partial Differential equations with applications, Dover

Publ., New York, 1986.

Kenan Yildirim | 151



152 | Optimality Conditions of a Hyperbolic Beam Equation based on Mindlin’s Gradient Elasticity...


