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Chapter 10

Use of Relative Entropy Statistics in 
Contingency Tables 
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Abstract

There are various information theoretic divergence measures used for 
determining associations between nominal variables. Among them, Shannon 
mutual information statistic is especially appealing, since its sampling 
properties are well-known. Although Shannon mutual information is more 
frequently used, Rényi and Tsallis mutual informations, as envelopes of various 
tools, provide much higher flexibility than Shannon mutual information. 
Indeed, Shannon mutual information is a special case of Kullback-Leibler 
divergence, Rényi, and Tsallis mutual informations. In this study, large 
sampling properties of Shannon, Rényi, Tsallis mutual information statistics 
are considered as well as Pearson, Tschuprow, Sakoda, Cramér, Hellinger, 
and Bhattacharyya measures. In simulations, the normality of most of the 
statistics, and the higher positive correlation coefficients between all these 
tools are observed. Their sampling variabilities are compared. Then by using 
Rényi and Tsallis mutual information statistics, correlation coefficients are 
estimated for 8 different scenarios, and 3 bivariate normal distributions.
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1. Introduction 

Distance functions in statistics are applied frequently. Some basic statistics 
like variance, and standard deviation are simply some functions of Euclidean 
and Minkowski distances. Kolmogorov-Smirnov statistic can be derived from 
Chebyshev distance, etc. Some tests of independence consider the distance 
(or divergence) between a joint probability distribution, and the product of 
two marginal probability functions. Thus, distance or divergence measures 
are used in hypothesis testing, as well as clustering some multivariate data. 
In Bayesian methodology, to evaluate sample information, comparisons 
between conjugate distributions can be made by some divergence measures. 
Some procedures of the sequential analysis of Wald (Wald, 2004) are based 
on the divergence between two Bernoulli distributions.

Analysis of dependencies may also be realized by entropy and relative 
entropy formalism. Mathematical foundations of entropy and relative 
entropy can be found in Shannon (Shannon and Weaver, 1963) and 
Khinchin (Khinchin, 1957). Preliminaries can be found also in Rényi (Renyi, 
2007), Ash (Robert, 1990), and Cover&Thomas (Cover and Thomas, 
2006). Following Shannon’s contribution to information theory, studies by 
Kullback (Kullback, 1997), Gokhale (Gokhale and Kullback, 1978), and 
Pardo (Pardo, 2006), rather focused on inferential issues of statistics within 
the framework of entropy.

Kulback considered entropy and mutual information (a special case of 
relative entropy) as the two key concepts of his system. Pardo discussed 
various divergence measures (including relative entropy) in goodness of 
fit testing, loglinear models and contingency tables. Singh (Singh, 1998) 
and Samilov (Şamilov, 2015) contributed in entropy-based parameter-
estimation, and optimizing entropy. From econometrics (Ullah, 1996) to 
information-theoretic learning (Principe, 2010); the applications of entropy 
and divergence measures vary on a wide range. 

In this study, Rényi and Tsallis mutual informations are considered in 
the context of two-way contingency tables. In case of nominal bivariate 
distributions, they can serve as an association measure between variables. 
In case of continuity of the variables, they may be used in estimating 
correlations after grouping bivariate continuous observations by the help of 
a contingency table as well. 

2. Independence Tests for Contingency Tables 

For contingency tables, the test of independence is based on the chi-
square statistic
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where ijp  is the hypothesized probability for the ith column and jth 
row of the contingency table, having I columns, and J rows and ijn  is the 
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If the variables are independent, this quantity is chi-square variable 

with ( )( )1 1I J− −  degrees of freedom. For an   I x J  contingency table, 

let ( )    , .q Min I J=  It can be shown that ( )20 1n qχ≤ ≤ −  (Liebetrau, 

1983). (2) is equivalent to 
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Note ( )20 1qϕ≤ ≤ −  with 2 0ϕ = ; in case of independence; and 
2 1qϕ = −  ; in case of perfect association. Alternatively, Pearson proposed 
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This measure is also called Pearson contingency coefficient. The range of 
P depends on the 

dimensions of the contingency table. Sakoda (Sakoda, 1976) suggests 
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Tschuprow considered the following 
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Finally Cramér statistic is 
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which is 1; in case of perfect association; and 0; in case of dependence; 
for all values of J and I. 

3. Entropy as a Measure of Variability 

The entropy of a statistical experiment is a measure of uncertainty. 
Various entropy formulations of probability distributions and various 
entropy measures are summarized well by Mihalowicz et al. (Mihalowicz et 
al.,2014) and Esteban&Morales (Estaban and Morales, 1995).

If the discrete random variable X takes values 1 2, , , Kx x x…  with 
respective probabilities 1 2, , , Kp p p…  on sample space S, then Shannon 
entropy is defined as 
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Rényi entropy is a generalization of Shannon entropy. It is defined as 
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As 1α → , Renyi entropy approaches to Shannon entropy. Another 
generalized form of 

Shannon entropy is due to Tsallis. It is defined as 
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Tsallis entropy approaches to Shannon entropy as 1.α →  Asymptotic 
properties of several entropy measures are given by Zhang (Zhang, 2013).
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4. Bivariate Distributions and Distance Measures

Suppose the pair of discrete random variables X and Y assume 

1 2 1 2, , ,    , , ,  n mx x x and y y y… … . If the joint probability function is denoted 

by ( ), ,X YP x y , then Shannon entropy is 
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iii.1. Renyi Divergence and Kullback-Leibler Information

Rényi order-α  divergence of q from p is defined as 
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The quantity,  pplog
q

 
∑  

 
, is called relative entropy. It is the divergence 

between two probability distributions, p and q. Tsallis order-α  divergence 
of q from p is defined as
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iii.2. Bhattacharyya and Hellinger Distances

Alternatively, Bhattacharyya coefficient (B.C.), and Bhattacharyya 
distance between two distributions, p and q are defined as (Upton and 
Cook, 2006)

. . .B C p q= ∑  (15)

( ) ( ). .BhaD p q Arccos B C=

 (16)
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Hellinger distance can also be calculated directly by Bhattacharyya 
coefficient; 

( ) ( ) 2 1 . .HelD p q B C= −

 
(17)

4.3. Shannon Mutual Information as a Measure of Independence 

Shannon mutual information (or Kullback-Leibler divergence) is defined as 
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If X and Y are independent, it is zero. For bivariate normal distribution, 
it is 
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Thus, the correlation coefficient can easily be estimated by

( )1 exp( 2. ; )ˆ I X Yρ = − −
 

(20)

4.4. Bivariate Version of Renyi and Tsallis Divergences 

Rényi order-α  divergence of ( ), ,X YP x y  from ( ) ( )X YP x P y  is defined 
analogously, 
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It is also called as Rényi mutual information. Tsallis order-α  divergence 
is 
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In case of independence, Rényi and Tsallis mutual informations are 
zero as Shannon mutual information. As 1α →  , Rényi and Tsallis mutual 
informations approach to Shannon mutual information. 
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4.5. Bhattacharyya and Hellinger Measures for Testing 
independence

Bivariate versions of Bhattacharyya and Hellinger distances are 
straightforward:
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5. Experimental Results

In simulations, 8 discrete bivariate distributions are considered. 5 of 
them are 2x2, the rest are 3x4 contingency tables. The variables are assumed 
to be continuous for making comparisons between information-theoretic 
independence measures and classic correlation measures. The eight bivariate 
distributions presented are given below: 

Table 1.1. 2x2 tables used in simulations having correlations 0.033, 0.88 and -0.88.

Distribution1 Distribution2 Distribution3

X/Y 1 2 X/Y 1 2 X/Y 1 2

1 0.5 0,4 1 0.5 0.03 1 0.03 0.5

2 0.05 0.05 2 0.03 0.44 2 0.44 0.03

Correlation 0.033 Correlation 0.88 Correlation -0.88

Table 1.2 2x2 tables used in simulations having correlations 0.49 and -0.49.

Distribution4 Distribution5

X/Y 1 2 X/Y 1 2

1 0.45 0.15 1 0.1 0.3

2 0.1 0.3 2 0.45 0.15

Correlation 0.49 Correlation -0.49
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Table 1.3 3x4 tables used in simulations having correlations -0.86 and 0.012.

Distribution6     Distribution7     

X/Y 1 2 3 4 X/Y 1 2 3 4

1 0.01 0.01 0.01 0.27 1 0.1 0.1 0.05 0.05

2 0.01 0.01 0.37 0.01 2 0.1 0.1 0.15 0.05

3 0.27 0.01 0.01 0.01 3 0.12 0.04 0.1 0.04

Correlation -0.86    Correlation 0.012    

Table 1.4 3x4 table used in simulations with correlation 0.86.

Distribution8     

X/Y 1 2 3 4

1 0.27 0.01 0.01 0.01

2 0.01 0.37 0.01 0.01

3 0.01 0.01 0.01 0.27

Correlation 0.86    

1000 independent observations are picked from each distribution. This 
procedure is repeated 1000 times. Then, the same experiments are repeated 
with 2000 independent observations, 2000 times. Simulations are realized 
by the help of Microsoft Excel. 

Large sampling properties of 19 association measures studied are given 
below.

Table 2. The goodness of fit statistics used in determining associations.

Measure Explanation Eqn. 
No. Measure Explanation Eqn. 

No.

I(X;Y) Mut.Info (Shannon) 18.
R2 Mut. Info 21.

(Rényi) α=2

Chi-square Chi-square 3.
T2 Mut. Info 22.

(Tsallis) α=2

Hellinger Hellinger Distance 24.
R3 Mut. Info 21.

(Rényi) α=3

Bhattacharyya Bhattacharyya 
Distance 23.

T3 Mut. Info 22.

(Tsallis) α=3
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R0.25
Mut.Info

21.
Cor. 

meas. Correlation measure 20.

(Rényi) α=0.25

T0.25
Mut. Info

22.
Pears. cc.  Pearson cont. coef. 4.

(Tsallis) α=0.25

R0.5
Mutual Info

21.
Sakoda  Sakoda coef. 5.

(Rényi) α=0.5

T0.5
Mut. Info

23.
Tschupr. Tschuprow coef. 6.

(Tsallis) α=0.5

R1.5
Mut.Info

21. Cramér  Cramér coef. 7.
(Rényi) α=1.5

T1.5
Mut. Info

22.
(Tsallis) α=1.5

5.1. Normality results

The normality of each statistic has been investigated. The seven normality 
tests used are Shapiro Wilk W, Anderson Darling, Martinez Iglewicz, 
Kolmogorov-Smirnov, D’Agostino Skewness, D’Agostino Kurtosis, 
D’Agostino Omnibus tests. The percentage of normality observed by 
simulations, for each statistic is given in Table 3. In general, the tendency to 
distribute normal is obvious with few exceptions, namely, Tsallis and Rényi 
mutual informations with 0.25α =  and 0.5α = 0 values.

Table 3. The tendency to normality of each statistics

Measure
% of Normality in 

Runs Measure
% of Normality in 

Runs

I(X;Y) 75 T1.5 75

Chi-square 75 R2 75

Hellinger 87.5 T2 75

Bhattacharyya 87.5 R3 81.25

R0.25 0 T3 75

T0.25 12.5 Cor. meas. 81.25

R0.5 18.75 Pears. cc. 62.5

T0.5 31.75 Sakoda 75

R0.75 56.25 Tschuprow 81.25

T0.75 62.5 Cramér 81.25

R1.5 75   



196 | Use of Relative Entropy Statistics in Contingency Tables

5.2. Sampling variabilities and average correlations 

Minimum standard deviations, and maximum average correlations 
(with the other association measures) are presented in Table 4. Pearson 
contingency coefficients, and T0.5 have generally the lowest variability. 
Mutual information, chi-square statistic, and T2 have maximum average 
correlations with others. 

Table 4. Minimum standard deviations, maximum average correlations

Distribution Population 
Correlation

Min. Std. 
Deviation Measure Maximum 

Ave. Corr. Measure

1(1000x1000) 0.033 0.0005 T0.25 0.9134 I(X;Y)
1(2000x2000) 0.033 0.0003 T0.25 0.8914 I(X;Y)
2(1000x1000) 0.88 0.0063 Pears.cc 0.9963 Chi-sq(=T2).
2(2000x2000) 0.88 0.0045 Pears. cc. 0.9972 Chi-sq(=T2).
3(1000x1000) -0,88 0.0063 Pears.cc 0.9974 Chi-sq(=T2).
3(2000x2000) -0,88 0.0046 Pears. cc. 0.9974 Chi-sq(=T2).
4(1000x1000) 0.49 0.0045 T0.25 0.9981 R2
4(2000x2000) 0.49 0.0046 Pears. cc. 0.9974 Chi-sq(=T2).
5(1000x1000) -0.49 0.0044 T0.25 0.998 I(X;Y)
5(2000x2000) -0.49 0.003 T0.25 0.998 I(X;Y)
6(1000x1000) -0.86 0.0019 Cramér 0.9826 I(X;Y)
6(2000x2000) -0.86 0.0013 Pears. cc. 0.9856 I(X;Y)
7(1000x1000) 0.012 0.0025 T0.25 0.9916 R1.5
7(2000x2000) 0.012 0.0016 T0.25 0.9901 I(X;Y)
8(1000x1000) 0.86 0.0019 R0.25 0.9857 Chi-sq(=T2).
8(2000x2000) 0.86 0.0014 Cramér 0.9873 Chi-sq(=T2).

5.3. Estimating correlations by mutual information statistics 

Correlation coefficients are estimated by plugging Shannon, Rényi 
and Tsallis mutual information quantities in (20). The best estimates for 
correlation coefficient, and related statistics are given in Table 5. All mutual 
information statistics are nonnegative; therefore, they only give information 
about the magnitudes of correlations. The distributions represented by 8 
contingency tables are not bivariate normal, but equation (20) is still used 
intentionally. As a general tendency, for lower population correlations, Tsallis 
and Rényi estimates with low α parameters are observed to be successful. 
Similarly, for higher population correlations, selecting higher α parameters 
may work. For moderate correlations, Shannon mutual information 
performs well.
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Table 5. Correlation estimates for 8 bivariate tables; normality assumption is violated.

Distribution Population 
Correlation

Estimated 
Magnitude of Cor. Best Measure

1(1000x1000) 0.033 0.036 T0.5
1(2000x2000) 0.033 0.031 R0.5
2(1000x1000) 0.88 0.928 R3
2(2000x2000 0.88 0.928 R3
3(1000x1000) -0,88 0.887 R2
3(2000x2000) -0,88 0.887 T2
4(1000X1000) 0.49 0.473 I(X;Y)
4(2000x2000) 0.49 0.471 I(X;Y)
5(1000x1000) -0,49 0.472 I(X;Y)
5(2000x2000) -0,49 0.473 I(X;Y)
6(1000x1000) -0,86 0.864 R0.75
6(2000x2000) -0,86 0.863 R0.75
7(1000x1000) 0.012 0.144 T0.25
7(2000x2000) 0.012 0.14 T0.25
8(1000x1000) 0.86 0.864 R0.75
8(2000x2000) 0.86 0.864 R0.75

5.4. Correlation estimates for bivariate normal distribution

Correlation estimates by various mutual information statistics, in case 
of bivariate normality, are made by simulating 1000 pairs. Simulations are 
realized by Microsoft Excel. Results are in Table 6.

Table 6. Correlation estimates for bivariate normal

Population 
Correlation

Absolute Value of Best 
Correlation Estimate

(9 groups)

Absolute Value of Best 
Correlation Estimate

(16 groups)

0 0.047(R0.25) 0.054(T0.25)

0.5 0.48(T2) 0.499(T2)

-0,5 0.521(R2) 0.501(R1.5)

0,75 0.754(T2) 0.763(R2)

-0,75 0.741(R2) 0.771(R2)

The number of groups used in discretizing normal data seems to be 
effective on mutual information statistics. In order to see this tendency, 
9 and 16 groups are used alternatively. If a mutual information statistic 
underestimates correlation, two strategies may work: i) increasing the 
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magnitude of α, or ii) increasing the number of categories of each variable 
in discretizing bivariate normal. 

6. Discussion

Zografos (Zografos, 1993) gives asymptotic distributions of φ 
divergences whose special cases are Kullback -Leibler divergence, Renyi 
order-α divergence, etc. He has shown that the asymptotic distribution of 
this statistic is either normal, or a linear form in chi-square variables. Agresti 
(Agresti, 2002) mentions asymptotic normality property of functions of 
counts of a multinomial distribution. But, selecting α seems to be decisive 
in observing normality of mutual information statistics. Smaller α selections 
like 0.25 or 0.5 probably prevent normality. But these α values yielded the 
measures with least variations, irrespective of the scales of measurement of 
the variables. Behind this, some mutual information statistics, having α values 
near 2, showed the maximum average correlation with other independence 
statistics (They inform well about the dependencies of variables!). Finally, if 
the variables are continuous, or bivariate normal, Rényi and Tsallis mutual 
informations succeeded in estimating correlations with proper selections of 
α. Smaller α will probably yield smaller correlation estimates, whereas higher 
α will yield higher correlation estimates. 
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