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Chapter 6

Type-2 Fuzzy Logic Applications in Solar Energy 
Technologies: A Comprehensive Overview 

Barış Sandal1

Abstract

This book chapter gives an overview of Type 2 Fuzzy Logic (T2FL) and its 
application in solar energy research. Through a comprehensive investigation, 
both the applications and limitations of T2FL in the context of solar energy 
systems are illuminated. It examines the role of T2FL methods in managing 
uncertainty and draws insights from contemporary academic literature. This 
book chapter contributes to a differentiated understanding of T2FL methods 
and their impact in the field of solar technologies. The chapter examines 
how T2FL helps improve the efficiency of solar energy forecasting models, 
overcome power control challenges, and improves solar system performance. 
Furthermore, the integration of T2FL with MCDM (Multi-Criteria Decision-
Making) methods for evaluating renewable energy alternatives is discussed. 
By providing practical insights and addressing potential challenges, this 
chapter seeks to advance knowledge in these interrelated areas. The content 
presented here aims to provide valuable perspectives for both academic and 
professional audiences and to position the T2FL principles in the dynamic 
landscape of solar energy.  In summary, the holistic view presented here 
enriches the discourse on T2FL methods and highlights their importance in 
the specific area of   solar energy research. 

1. Introduction

Traditional methodologies, designed around precise boundaries, often 
struggle to grapple with the multifaceted challenges of data generated by 
humans, inherently laden with imprecision and vagueness. These classical 
approaches fall short when confronted with the intricate nature of human 
cognitive processes. The term ‘approximate’ is commonly used in everyday 
discourse to pragmatically represent numerical values that are uncertain 
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or undefined, especially for quantities not based on precise measurements 
or well-defined parameters. However, the expressed, understood, and 
actual values may vary due to differences in both the formulation of the 
magnitude indicated by this ‘approximate’ expression by the speaker and 
the interpretation by the recipient. In situations characterized by inherent 
uncertainties, such as measurement inaccuracies or linguistic ambiguities, the 
indicated magnitude inherently incorporates an element of unpredictability.

Fuzzy Logic (FL) is a powerful tool that effectively addresses the 
complexities and uncertainties found in the real world. FL possesses the 
unique capability to navigate the subtleties and complexities inherent in 
various real-world scenarios. FL excels at faithfully replicating human 
reasoning, embracing the inherent ambiguities of human thought processes. 
This robust methodology mirrors the intricate nature of human reasoning 
and thrives in scenarios characterized by imprecision and vagueness, 
making it a versatile tool with diverse applications. FL has emerged as a 
prominent paradigm in the realm of scientific research, finding applications 
across a diverse array of academic disciplines. It has positioned itself as a 
sophisticated algorithm with relevance to intelligent systems, garnering 
extensive attention and recognition in academic investigations. This is 
notably apparent in its utilization across various engineering domains [1], 
[2], medical sectors [3]–[5], and decision support systems, underscoring 
its versatility and efficacy as a paradigm. FL, closely related to fuzzy set 
theory, transcends the understanding of complex systems. The evolution and 
implementation of fuzzy set theory have significantly broadened our capacity 
to model intricate real-world phenomena, offering invaluable insights into 
the realms of decision-making and artificial intelligence. It plays a crucial 
role in shaping the advancement of artificial intelligence by empowering 
machines to address tasks demanding problem-solving capabilities akin 
to those of humans, navigating the challenges posed by uncertainty. FSs 
excel in handling ambiguity in calculations and the modeling and control of 
complex systems, proving to be invaluable in both academic research and 
practical applications.

In order to improve the interpretive clarity and usefulness of naturally 
ambiguous concepts and to represent their heuristic meaning in a way that 
takes into account a variety of viewpoints, this expressed magnitude can 
be represented as a fuzzy set (FS). This approach leads to the creation of 
fuzzy numbers (FNs) in accordance with the mathematics of fuzzy logic, 
building upon the definition of FSs [6], [7]. To address the limitations 
of conventional set theory, Zadeh introduced fuzzy set theory in 1965. 
Further expounded upon by Zadeh in 1996, this theoretical framework has 
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significantly revolutionized our ability to address uncertainty and vagueness 
across diverse fields of study.

As we navigate the escalating complexities of uncertainty, academic focus 
organically shifts towards Type-2 Fuzzy Sets (T2FS), drawing inspiration 
from the seminal contributions of Mendel and Wu in 2002 [8]. The influential 
work of Mendel and Wu identified four main sources of uncertainty within 
FL: the use of technical terminology in rule antecedents and consequences, 
introducing inherent uncertainty; consequents depicting a spectrum 
of potential outcomes, often illustrated as histograms; measurements 
susceptible to the influence of noise; and the presence of noisy characteristics 
in tuning data, further complicating the landscape.

Type 1 fuzzy sets (T1FSs), a widely used subtype of FL, successfully 
navigate areas of uncertainty and imprecision compared to traditional 
approaches. T1MFs constructed according to the T1FS structure are 
favored for their practicality, offering a straightforward conceptual grasp and 
computational efficiency, making them the preferred choice for converting 
input variables into their fuzzy counterparts. Among the MF forms that are 
available, Gaussian, trapezoidal and triangular configurations are prevalent in 
practical applications. In the realm of scientific inquiry, T1FSs operate under 
the assumption of a definitive certainty regarding the MF shape designed by 
the researcher to suit a specific problem. Nevertheless, a notable challenge 
arises as T1MFs fall short in accommodating the uncertainty emerging 
from their inability to comprehensively articulate the MFs shape in practical 
contexts. This challenge prompts a deeper consideration for employing 
advanced methodologies, such as T2FS, renowned for its capability to 
address the inherent uncertainty in MF shapes. As we navigate the growing 
intricacies of uncertainty, scholarly attention naturally shifts towards 
T2FSs, inspired by the seminal contributions of Mendel and Wu in 2002 
[8]. T2FSs excel in modeling uncertainty within the MF by representing 
its boundaries with fuzziness. The fuzzy representation of the boundaries 
of Type 2 membership functions (T2MFs)  provides the opportunity to 
model uncertainties. Essentially, T2MFs are therefore inherently blurry. 
Furthermore, adding a third dimension to T2MFs increases the ability 
to model uncertainty levels. T2FSs emerge as the preferred choice for 
managing multifaceted uncertainties, as emphasized by Mendel and Wu in 
2002 [8]. However, comprehending and applying T2FSs poses challenges, 
as we will explore. Unfortunately, T2FS are more complicated to use and 
understand compared to their Type 1 counterparts, which may contribute to 
their limited distribution.
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The upcoming chapters aim to illuminate the complexities of FL, 
meticulously examining the strengths and limitations inherent in both 
methodologies, with a specific focus on their relevance to solar energy. Our 
goal is that, upon completion of this chapter, professionals and scholars 
immersed in solar energy research will possess the essential knowledge 
to make insightful decisions regarding the practical application of FL in 
the context of solar technologies. The enduring scholarly and industrial 
fascination with FSs continues to drive extensive research efforts across 
diverse domains, particularly within the ever-evolving landscape of solar 
energy.

This chapter’s main goal is to offer insights regarding Type-2 Fuzzy 
Logic’s (T2FLs) contemporary applications in the field of solar energy, with 
a specific focus on Type-2 Fuzzy Numbers (T2FNs) and Type-2 Fuzzy Logic 
Systems (T2FLSs). Fuzzy logic finds two significant applications in fuzzy 
numbers and fuzzy systems. The initial stage of the book chapter imparts 
knowledge about T2FL theory. At this juncture, information about T2FNs 
and their arithmetic operations will be presented through an examination 
of General Interval Type-2 Triangular Fuzzy Numbers (GIT2TFNs), a 
type of T2FN, for enhanced comprehensibility. Subsequently, to facilitate 
understanding, T2FLSs will be explained comparatively with Type-1 Fuzzy 
Logic Systems (T1FLSs).

This book chapter is divided into multiple sections, each focusing 
on a different facet of T2FNs and T2FLSs in their modern solar energy 
applications. In the introductory section, the focus is on the theory of 
T2FL, highlighting its capabilities in dealing with uncertainty scenarios 
and emphasizing the distinctions from T1FL. The subsequent chapter, 
titled “Brief Introduction of the Type-2 Fuzzy Set Calculations,” thoroughly 
examines the fundamental concepts of T2FL, making sure that its 
mathematical concepts and principles are fully understood.. This section 
consists of two sub-sections, namely “Interval Type-2 Fuzzy Logic Systems” 
and “Interval Type-2 Fuzzy Numbers.” In these subsections, concepts such as 
Interval Type-2 Fuzzy Numbers (IT2FNs) and Interval Type-2 Fuzzy Logic 
Systems (IT2FLS) are explored in-depth, providing a clear explanation of 
basic concepts and processes and laying the groundwork for the topics to be 
addressed in the subsequent chapters. The following sections, “Applications 
of T2FLSs in solar energy” and “Applications of T2FNs in solar energy,” 
sequentially delve into the roles of T2FN and T2FLS in the complexities 
and uncertainties in solar energy research, highlighting novel applications in 
the literature. These chapters offer a comprehensive understanding of how 
T2FL is applied in the field of solar energy, providing readers with insights 
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into the latest developments. Additionally, they focus on a broad range 
of application areas, extending from decision-making processes involving 
IT2FNs to the application of T2FLSs in solar energy prediction models.

2. Brief Introduction of the Type-2 Fuzzy Set Calculations

The Boolean system uses a value system where 1 represents absolute truth 
and 0 represents absolute falsehood, as exemplified by the MF expressions 
below. These expressions illustrate the binary nature of the Boolean system, 
capturing the essence of truth and falsehood within the defined context.

        (1)

        (2)

Fuzzy set theory allows the representation of truthfulness or falsity degrees 
through membership degrees. This metric determines the degree to which 
element ‘x’ is a member of a fuzzy set, represented by the letter ‘A’. There is 
a wide range of truthfulness values in FL, from complete falsity to complete 
truthfulness. Membership values represent partial degrees of truthfulness and 
falsity and fall between 0 and 1. These degrees, which simplify as a judgment 
call on an element’s degree of association with the set, are computed using a 
MF. A membership value of 0 indicates total non-membership and absolute 
falsity. On the other hand, a membership value of 1 denotes complete 
honesty and represents all members of the set. This nuanced approach to 
truth values, facilitated by fuzzy set theory, is instrumental for addressing 
uncertainty and vagueness in diverse applications, providing a sophisticated 
framework for decision-making and problem-solving.

As a result, Lotfi A. Zadeh introduced the concept of type-n fuzzy sets, 
encompassing T1FSs and T2FSs [9]. These sets form the basis of fuzzy 
theory, enabling the computation of membership degrees. Particularly, when 
dealing with a T1FS denoted as ‘A’ equation (3) is employed to ascertain 
membership characteristics. The membership function is denoted as 
, where , expressed as equation (4).

         (3)

         (4)

In simple terms, converting crisp input variables into fuzzy variables is the 
method’s basic operation. In order to express the degree of membership of 
the variable “x” to the FS, the MF acts as a defining factor by allocating a real 
numerical value in the range [0-1]. Numerous MFs have been developed to 
accommodate different types of FSs, with T1MFs occupying a predominant 
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position in terms of recognition and general use. In contrast, T2FS are three-
dimensional structures and are based on principle of Zadeh’s extension for 
fundamental operations like intersection, complement and union. Thus, in 
comparison to T1FS, comprehending T2FS typically involves more intricate 
and lengthy computations. Their wider adoption in a variety of applications 
has been hampered by their increased complexity.

We use linear functions to determine the boundaries of T1MFs, as shown 
in Figure 1-a, while the boundaries of T2MFs are determined as the interval 
between the upper and lower membership functions (UMF and LMF), as 
shown in Figure 1-b. The upper membership function (UMF) is represented 
by an overline, while the lower membership function (LMF) is indicated by 
an underline. The “Footprint of Uncertainty” (FOU), as depicted in Figure 
1-b, is the area that exists between these fuzzy borders. The UMF and the 
LMF are both essentially two T1MFs that define the outer limits of the 
FOU within a T2MF. The highest degree of membership in the FOU subset 
is characterized by the UMF, whereas the lowest degree of membership in 
the subset is characterized by the LMF.

(a)                                                                           (b)

Figure 1: Illustrations of Membership Functions for Type-1 Triangular (a) and Type-2 
Gaussian (b)  [10]

Mendel (2014) identified four mathematical representations for a T2FS: 
a) A group of individual points, as shown by Equation (5). b) As shown by 
Equation (6), a union of vertical slices over the whole domain X, where each 
vertical slice is a T1FS (a secondary MF). c) A union of wavy slices, each 
of which stands for a T2FS embedded in it. d) A fuzzy union of horizontal 
slices over [0, 1], where each horizontal slice resembles an IT2FS elevated to 
α [11]. In this book chapter, the symbol Ã was used to denote T2FS, which 
can be formulated as follows.



Barış Sandal | 95

  (5)

      (6)

In this particular context, the primary variable of a T2FS is denoted by x, 
while the secondary variable is represented by u. Additionally, J designates 
the secondary MF. For a specific value of of ,  signifies the 
vertical cross-section of , and the formal expression of the T2MF 
of  is presented in equation (7). Here, , , and 

, as described by Mendel and John [12]. Additionally, 
 signifies the magnitude of the secondary MF, where .

  (7)

When ,

Ã is recognized as an IT2MF. The third dimension in general T2FSs is 
often considered redundant, providing no additional information, and is thus 
treated as a special case. Specifically, an IT2FS is viewed as a distinct subtype 
within the broader category of T2FSs. Due to its user-friendly nature and 
minimal computational demands, IT2FSs find frequent application. In these 
sentences the third dimension is considered uninformative and is taken to 
stay unchanged. As a result, only the FOU is utilized to characterize IT2FSs, 
and the third dimension is dismissed.  The MF, influenced by the distinctive 
traits of T2FS boundaries, can adopt values within the [0-1] range along a 
vertical continuum between the upper-bound  and the lower-bound 

, deviating from the crisp numbers utilized in the context of T1FSs. 
T2FS and IT2MF are expressed in equation 8 and equation 9, respectively.

        (8)

  (9)

The values representing the highest membership degree of the FOU for 
the UMF and the portion with the lowest membership degree for the LMF 
can be expressed by equations (10) and (11), respectively. Utilizing equation 
(12) for an arbitrary T2MF interval , membership degrees for its lower 
and upper bounds can be calculated.

                           (10)

                           (11)
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    (12)

The MFs in Interval Type-2 Fuzzy Sets (IT2FSs) can be of various 
shapes, such as triangular, trapezoidal, Gaussian and sigmoid types similar to 
those used in T1FSs. If we symbolize the Gaussian Membership Function as 

, an analogous equation can be articulated, following the framework 
presented by Liang and Mendel [13]. In the case of a Gaussian MF with a 
fixed mean  and a variable standard deviation falling within the interval [

, ], the MF is denoted by Equation (14).

    (13)

   (14)

2.1. Interval Type-2 Fuzzy Logic Systems

The typical configuration of a T2FLS is illustrated in Figure 2. The 
structure of a T1FLS encompasses fuzzification, a fuzzy rule base, a fuzzy 
inference engine and defuzzification processes. Comparatively, the structure 
of a T2FLS closely resembles that of T1FLSs, with the notable distinction 
that the type reducer, facilitating the conversion from T2FSs to T1FSs, 
precedes the defuzzifier. Additionally, the architecture of a T2FLS aligns 
with the type-1 form, differing primarily in having at least one fuzzy set 
in the rule base designated as type-2. Conversely, the output of a T2FLS 
inference engine consists of T2FS, necessitating the use of a type reducer 
to transform them into T2FSs before feeding them into the defuzzification 
process [14]. 

The overall framework of a T2FLS is presented in Figure 2. The structure 
of a T1FLS includes key components such as fuzzification, a fuzzy rule base, 
a fuzzy inference engine, and defuzzification. Notably, the architecture of 
an IT2FLS closely resembles that of T1FLSs, with a distinctive variation: 
In T2FLS using T2FSs instead of T1FSs, the presence of a type reducer 
positioned before the defuzzifier to reduce T2FSs to T1FSs facilitates the 
transformation from T2FSs to T1FSs. Furthermore, the T2FLS structure 
aligns with the type-1 form, differing primarily in the inclusion of at least 
one fuzzy set in the rule base designated as type-2. Conversely, the output 
of a T2FLS inference engine comprises T2FSs, necessitating a type reducer 



Barış Sandal | 97

to convert them into T1FSs before feeding them into the defuzzification 
process [15].

Figure 2: General architecture of the IT2FLS [10]

The operational principle of an IT2FLS can be elucidated as follows: the 
crisp inputs undergo mapping by the fuzzifier, resulting in input IT2FL sets.  
The fuzzifier of an IT2FLS may be of singleton or non-singleton type. In 
the case of a singleton fuzzifier, denoted as (i=1, …, p), the input fuzzy set 

  possesses only one point of nonzero membership, expressed as follows

                              (15)

The rule base of T2FLS is akin to that of T1FL, but in T2FLS, FSs 
are shaped by expert knowledge and articulated through their antecedents 
and consequents. The antecedents and/or the consequents are expressed by 
IT2FSs, yet the rules maintain a similarity to T1FLS. Mamdani rules, which 
result in IT2FSs, and Takagi and Sugeno (TSK) rules, which result in net 
functions of inputs, are the two different types of rules for IT2FLSs. [16]. 
IT2FSs do not impact the rule base; the rule structure of IT2FLSs aligns with 
that of T1FLSs. The Mamdani rule base is generally widely used because it 
integrates expert knowledge easily, simply, and adaptably. The form for the 
l th rule of an IT2FLS that has M rules, p inputs , and 
one output  is presented as shown in Equation (16).

  (16)

The fuzzy inference engine, a crucial component in FL reasoning, is 
employed to generate fuzzy outputs based on the fuzzified inputs. This 
phase involves the inference engine determining, for each IF-THEN rule, 
the outputs that correspond to the fuzzified inputs that were computed in 
the previous fuzzifier stage. The fired rules are consolidated by the inference 
engine, followed by a mapping process from input T2FSs to output T2FSs.  It 
produces the IT2FS consequents from the IT2FS antecedents by combining 
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all the fired rules. The meet and join operations are employed to connect 
multiple antecedents in each rule and integrate all the rules. As can be seen 
below, the result of the k th input and the matching antecedent operations in 
the l th rule is an interval [17].

   (17)

To employ a T2FLS in practical applications, obtaining the precise output 
in crisp form becomes imperative. To achieve this, it is necessary to obtain 
the type-reduced set, which is an interval that represents a T2FS’s center of 
gravity. The type reducer processes the T2FS outputs from the inference 
engine, executing a calculation that results in T1FSs known as the type-
reduced sets. Subsequently, the type-reduced sets undergo processing by the 
defuzzifier to yield crisp outputs that must be directed to the actuators. The 
Karnik-Mendel (KM) algorithm, which is based on iterative operations and 
functions as an extension of a type-1 defuzzification procedure, is the most 
commonly used approach for this purpose [18].

To transform the interval set that is acquired after the type reduction 
operation into a precise number, defuzzification is then required. Equation 
(18) illustrates how to perform this process, which involves merely calculating 
the average of the range’s left and right endpoints [12].

                                                  (18)

2.2. Interval Type-2 Fuzzy Numbers

Interval Type-2 Fuzzy Numbers (IT2FNs), with their two-dimensional 
membership function structure, enable a more comprehensive handling 
of uncertainties and complexities in the model, significantly reducing 
complexity in problem-solving. Evaluated as two-dimensional due to the 
absence of information in its third dimension, IT2FNs have facilitated and 
simplified mathematical operations. The computational efficiency of IT2FNs 
has positioned them at the forefront of scientific inquiry, particularly when 
contrasted with the computational intricacies associated with T2FNs.

In the context of IT2FSs, denoted as Ã and bounded by LMF and UMF 
represented as Ã = (Al, Au), specific categorizations have been established. An 
IT2FS achieves the classification of a Perfect Interval Type-2 Fuzzy Number 
(PIT2FN) if both its UMF and LMF are Type-1 Fuzzy Numbers (T1FNs). 
Alternatively, if the UMF is a T1FN while the LMF is a Fuzzy Sub Number 
(FSN), the IT2FS is referred to as IT2FN. When both UMF and LMF are 
FSNs, the IT2FS is called an Interval Type-2 Fuzzy Sub Number (IT2FSN). 
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General Interval Type-2 Trapezoidal Fuzzy Numbers (GIT2TrFNs) play 
a fundamental role in arithmetic operations and the ranking of IT2FNs, 
which are characterized by rectilinear boundaries, as shown in Figure 3. In 
this framework, GIT2TFNs appear as a separate case within the GIT2TrFN 
category.

For arithmetic operations and ranking among IT2FNs with linear 
boundary profiles, GIT2TrFNs can be used as an exemplary model as 
shown in Figure 3.. It is noteworthy that from the information provided 
for GIT2TrFN, analogous procedures for GIT2TFNs can be easily derived. 

Figure 3: UMF, LMF and FOU representation for a GIT2TrFN with heights of hl
 and 

hu [19]

Figure 4:  Au and Al functions of a GIT2TrFN and representation of their heights [19]



100 | Type-2 Fuzzy Logic Applications in Solar Energy Technologies: A Comprehensive Overview

The GIT2TrFN depicted in Figure 4 can be mathematically expressed as in  
and can be 

characterized for its MFs, denoted as Al and Au, as follows. When  , 
 , and  conditions are present, these 
numbers are respectively referred to as Interval Type-2 Flat Trapezoidal 
Fuzzy Number (IT2FTrFN) and Perfect Interval Type-2 Trapezoidal Fuzzy 
Number (PIT2TrFN).

     (19)

and

     (20)

For the case where  
 

, 
  

and k is crisp, certain arithmetic and ranking operations for GIT2TrFNs 
are defined as follows [20]–[22]:

Addition Operation:

(21)

Subtraction Operation:

  (22)
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Multiplication Operation:

       (23)

where

                            (24)

Scalar Multiplication Operation:

    (25)

   (26)

Ranking of IT2FNs: The IT2FS ranking is indispensable due to 
its widespread use in decision-making processes and its critical role in 
facilitating a deeper study of fuzzy systems. The importance of the IT2FN 
ranking cannot be overlooked as it plays an important role in decision-
making processes and allows for a further investigation of fuzzy systems. 
Although the field of ranking methods on IT2FS is noticeably narrow and 
requires new approaches, similarity and uncertainty measures  have drawn 
broad methodology. While there exists extensive methodology and research 
interest in similarity and uncertainty measures for IT2FSs, the field of 
ranking methods is constrained, requiring fresh perspectives and innovative 
solutions [20], [22]–[25].

The ranking method proposed by Lee and Chen for IT2TrFSs 
for the interval type-2 trapezoidal fuzzy set expressed as 
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is presented below [22]. In the equations, the ranking value is denoted as 
Rank( ).

(27)

  denotes the average of the elements  and  for ,

  denotes the standart 

deviation for ,

  denotes the membership value of the element  in the 

trapezoidal MF  for , and 

3. Applications of T2FLSs in solar energy

In recent years, the utilization of T2FLSs has gained prominence in the 
realm of solar energy research, offering a robust framework for addressing 
uncertainties and complexities inherent in various aspects of solar energy 
studies. This text explores the diverse scientific domains where T2FLSs 
have found application within solar energy investigations, providing a 
comprehensive overview of their contributions.

The integration of solar energy with other Renewable Energy Sources 
(RESs), such as wind or biomass, has been facilitated through the application 
of type-2 fuzzy control systems (T2FLCs). This integration aims to create 
more reliable and efficient hybrid energy solutions. The use of electric 
vehicles is rapidly expanding in contemporary times, with users frequently 
charging their electric vehicles at home. Beheshtikhoo et al. have designed a 
T2FLC for the energy management system of a smart home equipped with 
an electric vehicle charging station and a RES. Their proposed algorithm 
effectively controls a small hybrid renewable energy system, combining 
photovoltaic (PV), vertical axis wind turbines, fuel cells, electric vehicles 
and energy storage systems, in a climate-independent manner. In their study, 
they observed that the controller could significantly reduce daily electricity 
consumption from the grid, electricity costs and the peak-to-average ratio 
of the system [26].
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To address the challenges posed by continuous and severe output power 
variations in the integration of solar energy power systems with each other or 
with traditional and other renewable power sources, controllers are employed 
to manage load frequency control problems. Soliman et al. have proposed a 
T2FLC, not only to mitigate the impact of solar irradiance changes on the 
power system but also to regulate the output of the solar park on cloudy 
days, instead of relying on maximum power point trackers. In order to 
improve the suggested controller’s dynamic performance, a meta-heuristic, 
nature-inspired optimization algorithm such as the Whale Optimization 
Algorithm (WOA) has been suggested for offline tuning of controller gains 
[27]. To reduce the total harmonic content in grid-tied solar energy systems 
using boost converters for integrated solar multi-level inverters, Gopinath 
et al. have proposed a solar-powered cascaded topology with Interval Type-
2 Fuzzy Logic Controller (IT2FLC). This topology aims to predict the 
switching frequency for multi-level inverters, enhancing performance in 
minimizing total harmonic distortion and ensuring a stable output power 
[28]. In the solar PV integrated power system, another challenge related 
to power control is the reduction of Low-Frequency Oscillations (LFOs), 
which impact the stability of the power system. Paital et al. have proposed 
a robust Power System Stabilizer (PSS) based on Interval Type-2 Fuzzy 
Proportional Integral Derivative (IT2FPID), considering uncertainties, 
aiming to address and optimize the solution to this problem in their study 
[29].

T2FLS have proven valuable in improving solar energy prediction models. 
By accommodating uncertainties related to factors like sunlight intensity and 
weather conditions, these systems enhance the accuracy of energy production 
forecasts. The random nature of RESs often leads to an inability to provide 
continuous energy, prompting their frequent combination with energy 
storage systems or other energy sources. To overcome this weakness in RESs, 
predictions can be made using meteorological data, specifically reducing 
uncertainties in the sizing of energy projects. Jafarzadeh et al. utilized fuzzy 
logic to model the predicted temperature and irradiance data, employing 
type-1 and Interval Type-2 Takagi-Sugeno-Kang (TSK) fuzzy systems for 
modeling and forecasting solar power plants. The significant advantage of 
using IT2FL models is that, in addition to predicting the power generation 
value, it provides an uncertainty range. Information related to uncertainty 
in the prediction enables operators to develop effective bidding strategies in 
the electricity market [30].

Researchers utilize type-2 fuzzy systems to address optimization 
challenges in the design and operation of solar energy systems. These systems 



104 | Type-2 Fuzzy Logic Applications in Solar Energy Technologies: A Comprehensive Overview

provide solutions for complex problems involving multiple objectives and 
constraints. Hydrogen energy, a green energy type, becomes even more 
crucial for sustainable development when produced by using a RES as solar 
energy. Benghanem et al. investigated the power loss and efficiency of a 
PV-electrolyzer system comprising a PV source and electrolyzer stack in 
both direct and indirect-coupled scenarios. To enhance energy transfer, they 
proposed a type-2 fuzzy logic controller to regulate the operating point of 
the PV array by adjusting the duty cycle of the control signal of a buck 
converter placed between the PV array and the electrolyzer stack. In the 
study, the indirectly-coupled hydrogen system achieved a higher energy 
transfer rate by ensuring the continuous extraction of the maximum power 
from the PV source [31].

Researchers have integrated T2FLS into studies aimed at enhancing the 
efficiency of solar energy systems. By modeling the interactions of various 
parameters and variables, these systems assist in optimizing the performance 
of solar installations. In the field of energy production using PVs, various 
Maximum Power Point (MPP) tracking methods have been developed to 
achieve maximum energy output. Key environmental conditions such as solar 
radiation and temperature are critical to achieving maximum energy and 
these conditions are often uncertain and irregular. The traditional method 
cannot track the Maximum Power Point (MPP) when solar irradiance and/or 
panel temperature changes rapidly because rapid changes in PV current and 
PV voltage cannot be distinguished under real environmental conditions. 
In Kayisli’s study, a super twist slide mode controller was developed for 
maximum power point tracking. It has been adapted to a Type 2 fuzzy cluster 
system to mitigate chatter problems, and the parameters of both the super 
twisting sliding mode and the Type 2 fuzzy cluster have been optimized for 
improved performance [32]. The traditional incremental conductivity (AIC) 
method cannot efficiently track the maximum power point (MPP) because 
it is unable to distinguish rapid changes in photovoltaic (PV) current and 
voltage under actual environmental conditions. Gani et al. found that their 
approach, based on the combination of AIC and T2FL, provides a significant 
advantage in terms of maximum power transfer in long-term weather 
conditions with frequent cloudburst occurrence over a 40-month test period 
[33]. Pandey et al. have designed an Asymmetric Interval Type-2 Fuzzy Logic 
controller-based MPPT to cope with sudden irradiance changes commonly 
encountered in PV applications, which adversely affect the operation of 
the Maximum Power Point Tracking (MPPT) system. They compared the 
results with P&O (Perturb and Observe), PID and T1FLC [34]. Verma et 
al. have developed an asymmetric interval Type-2 fuzzy logic controller for 
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the MPPT algorithm to perform best performance, when photovoltaic (PV) 
array is partially irradiated under uniform solar irradiance. They compared 
their developed algorithm with other approaches, such as perturb & observe 
(P&O) and T1FLC, to assess for GMPP tracking, fill factor, shading losses, 
mismatch loss and efficiency [35].

4. Applications of T2FNs in solar energy 

Type-2 fuzzy systems contribute to decision-making processes in solar 
energy projects by considering uncertainties and multiple criteria. This 
facilitates the formulation of effective and informed strategies in the planning 
and execution of solar initiatives. The FL approach is often integrated 
with many multi-criteria decision-making (MCDM) methods, offering 
application-centric approaches to complex decision-making challenges 
involving multiple criteria and inherent uncertainties. FL integrated standard 
techniques are referred to as fuzzy hybrid techniques. This integration 
approach is widely embraced to obtain comprehensive and realistic results 
when dealing with complex real-world decision-making problems. This is 
attributed to FL’s robust utility as a powerful tool for effectively managing 
such uncertainties in numerous decision-making processes where the natural 
presence of uncertainty and imprecise information is acknowledged [19].

The theoretical foundations of MCDM processes, such as Technique for 
Analytical Network Process (ANP), Order Preference by Similarity to Ideal 
Solution (TOPSIS), and VlseKriterijumska Optimizacija I Kompromisno 
Resenje (VIKOR), Analytical Hierarchy Process (AHP), along with 
the arithmetic operations employed in these processes, are conducive to 
the utilization of FNs. Decision-making methods based on T1FNs are 
extensively applied in a diverse range of academic studies [15], [36]–[38],  
due to both the ease of calculations compared to other fuzzy numbers and 
their proficiency in addressing problems characterized by uncertainty [39] .

Methods based on T2FSs in MCDM mostly aim to make decisions 
considering the advantages and disadvantages of renewable energy alternatives 
(REAs) based on various selection criteria that encompass both quantitative 
and qualitative factors [39], [40].  In their study to determine the best 
RES for Turkey, Balin & Baraçli used the Interval Type-2 Fuzzy TOPSIS 
(IT2FTOPSIS) method to compare solar, biomass, geothermal, hydraulic 
and hydrogen renewable energy sources. According to the results of the 
study, the best alternative for energy investments in Turkey is wind energy, 
followed by solar, biomass, geothermal, hydraulic and hydrogen energies, 
respectively [41]. In a comparable study, Çolak et al. applied an integrated 
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MCDM model for prioritizing REAs in Turkey. In their suggested fuzzy 
MCDM model, they combine the Interval Type-2 Fuzzy Analytic Hierarchy 
Process (IT2AHP) method for determining the weights of decision criteria 
with the hesitant fuzzy TOPSIS method for prioritizing REAs. The study 
also includes a sensitivity analysis examine the effects of main criteria weights 
in ranking. When applied to Turkey, their proposed model ranks the RES as 
Hydraulic Energy, Wind Energy, Geothermal Energy, Solar Energy, Biomass 
Energy, Wave Energy, and Hydrogen Energy [42]. The specific characteristics 
of countries will also influence the comparative results of RESs, another 
study to compare RESs is the application of a Gaussian IT2FSs-based 
prospect theory method by He et al. The authors introduce a Gaussian 
interval type-2 fuzzy distance measure and A Gaussian interval type-2 fuzzy 
entropy model in their research. With their developed evaluation approach, 
they rank hydraulic, solar, biomass, wind and electrochemical energy types in 
Anhui, China. The study compares the results with the rankings of extended 
fuzzy TOPSIS-based RES evaluation method [43], interval type-2 fuzzy 
prospect theory method and IT2FTOPSIS [44]. 

The increasing sensitivity towards sustainability has become a factor 
influencing the choice of RES and alternative fuels [45]. Hendiani & 
Grit Walther propose a new MCDM method based on the concept of 
Interval Type-2 Fuzzy Ideal Solution Distance to assess the sustainability 
performance of renewable energy systems and determine the existing 
degree of sustainability. The notion of distance to the ideal solution is 
introduced and generalized with Interval Type-2 fuzzy sets. In the study, 
social, economic, and environmental aspects are identified as three separate 
indicators of sustainability. The results reveal that factors such as “Filling 
station availability” from an economic perspective, “NOx emissions”, 
“Need for waste disposal” and “Land requirements” from an environmental 
perspective and “Social acceptability” from a social perspective are identified 
as low-performing factors contributing significantly to both individual and 
overall sustainability performance [46]. In another study on sustainability, 
Abdullah & Najib applied an Interval Type-2 Fuzzy Analytic Hierarchy 
Process (IT2FAHP) through a seven-step calculation process to select a 
sustainable energy source among seven identified alternatives. The results 
indicate that solar energy emerges as the most viable alternative among 
sustainable energy sources [47].

Decision-making methods can be employed not only for the selection of 
RES, but also, as in the study by Li et al., to explore consumers’ expectations 
from RESs. Li et al. employed the Interval Type-2 Fuzzy DEMATEL 
(IT2FDEMATEL) method to determine the weights of strategies for 
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solar energy investments based on the priorities assigned by customers to 
8 different TRIZ-based innovative strategies. Through this approach, they 
identified the more significant strategies by weighting them. According 
to the results, the best TRIZ-based investment strategy for solar energy 
projects, for both commercial and non-commercial customers, emerged as 
replacing the mechanical system. [48]

Technical decisions can also be made using MDCM methods, such as 
the solar panels selection or the decision on a sun-tracking system in a 
solar energy facility. Tüysüz & Kahraman aimed to create a reliable three-
dimensional decision environment by integrating Z-numbers into Picture 
Fuzzy Sets (PFS) in the literature to evaluate solar panel alternatives in 
Turkey. The AHP method was expanded with picture fuzzy Z-numbers 
to weigh evaluation criteria and the TOPSIS method was extended with 
picture fuzzy Z-numbers to prioritize the considered alternatives. The 
study revealed that Monocrystalline PERC is among the good solar panels, 
while Cadmium Telluride thin film is identified as the least favorable[49]. 
Umer et al. have introduced an expanded TOPSIS method in the context 
of Interval Type-2 Trapezoidal Pythagorean Fuzzy Numbers (IT2TrPFN). 
They compared widely used tracking systems, including Active Tracking 
(AT), Manual Tracking (MT) and Passive Tracking (PT), based on reliability, 
response and accuracy criteria [50].

5. Conclusion

In conclusion this book chapter collectively embark on a comprehensive 
exploration of T2FL methodologies specifically within the domain of solar 
energy research and delves into the intricate landscape of Type-2 Fuzzy Logic 
(T2FL) within the realm of solar energy research drawing inspiration from 
existing scholarly works. Leveraging insights from contemporary scientific 
literature the content presented in this volume contributes to a nuanced 
understanding of T2FL methodologies and their implications within the 
realm of solar technologies. The elucidation of numerical operations notably 
arithmetic intricacies and ranking dynamics within IT2FNs contributes 
to the foundational understanding of T2FL methodologies. By situating 
T2FL principles within the dynamic context of solar energy these chapters 
provide valuable perspectives for both academic and professional audiences. 
In summary this book chapter aspire to provide a holistic view of T2FL 
methodologies contextualizing their significance within the specific domain 
of solar energy research.
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