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Abstract

Fossil fuels have traditionally played a crucial role in global energy 
production, but they cause significant environmental challenges. In response, 
the scientific community has shifted its focus toward renewable alternative 
fuels. In this context, biodiesel and alcohols have emerged as promising 
options for diesel engines. This study is centered on predicting the cylinder 
pressure of a single-cylinder four-stroke diesel engine fuelled with a diesel 
fuel-biodiesel (methyl ester)-isopropanol ternary blend using three machine 
learning algorithms: Gaussian Process Regression (GPR), Artificial Neural 
Networks (ANN), and Ensembles of Trees (ET). The cylinder pressure data 
is collected under the full throttle condition and different engine speeds. 
GPR, ANN, and ET algorithms are trained and compared using root mean 
square error and regression analysis. GPR exhibits outstanding prediction 
performance during the validation, with a lower root mean square error of 
0.12686, and r2 of 1.00. ANN also exhibits strong prediction performance, 
with a validation of root mean square error of 0.47081, and a r2 of 1.00. 
ET, while showing a slightly higher validation root mean square error of 
1.73370, maintains strong predictive capability with an r2 of 0.99. However, 
a comparison between the measured cylinder pressure data and the predicted 

1 Assistant Prof. Dr., Karadeniz Technical University, Faculty of Engineering, Department of 
Mechanical Engineering, Trabzon, TURKEY, ORCID ID: 0000-0002-1792-3499,

 gulum@ktu.edu.tr
2 Assistant Prof. Dr., Karadeniz Technical University, Faculty of Engineering, Department of 

Mechanical Engineering, Trabzon, TURKEY, ORCID ID: 0000-0002-0268-3656
 karabacak@ktu.edu.tr

https://doi.org/10.58830/ozgur.pub250.c1201



50 | Data-Driven Predictive Modeling of Cylinder Pressure: A Comparative Analysis of Gaussian...

values reveals a qualitatively and quantitatively closer agreement, particularly 
for ANN. These findings can suggest the practicality and reliability of these 
algorithms for predicting cylinder pressure in internal combustion engine 
studies. In conclusion, this study can contribute to the expanding body of 
research on alternative fuels and machine learning applications in internal 
combustion engines. 

1. Introduction

Fossil fuels currently play a crucial role in meeting a substantial portion 
of the world’s energy demand. Given that energy constitutes a fundamental 
human requirement, it is anticipated that worldwide energy consumption will 
increase throughout the twenty-first century [1]. However, the widespread 
use of fossil fuels has serious drawbacks (environmental degradation, steep 
price increases, and the threat of fossil fuel depletion). Due to these pressing 
issues, the interest in alternative energy sources has experienced a significant 
upswing. In the current scenario, biodiesel and alcohols have garnered 
significant scientific interest in the recent past as renewable alternatives for 
diesel engines [2]. 

Traditionally, biodiesel is produced through a process called the 
transesterification (alcoholysis). This process entails the reaction of oil 
(triglycerides) with alcohol (generally methanol and ethanol) in the presence 
of a catalyst, resulting in the formation of biodiesel (fatty acid esters) and 
glycerol (by-product). There are a variety of catalysts available, depending 
on the amount of free fatty acids present in the oil, such as bases, acids, or 
enzymes [3]. 

As a renewable fuel, biodiesel is characterized by low sulfur and aromatic 
content, improved lubricity, higher flash point compared to diesel fuel, 
excellent biodegradability, and reduced toxicity [4]. It has oxygen content 
(10-12% by mass) within its molecular structure (thereby reducing some 
exhaust emissions) and good miscibility with diesel fuel [5]. In addition, 
biodiesel reduces net CO2 emissions over its entire life cycle [3]. However, it 
has also drawbacks including increased viscosity, poor cold flow properties, 
lower calorific value, and reduced oxidation stability and volatility, compared 
to diesel fuel [4, 6]. 

Alcohols, a significant subset of biomass-derived fuels, have gained 
recognition as promising alternatives to fossil fuels. They can also serve as 
additives in biodiesel [7]. Isopropanol (C3H8O), an oxygenated additive, 
emerges as a significant byproduct of the IBE (isopropanol-butanol-ethanol) 
fermentation process. It is an isomer of propanol. The density at 293.15 K, 
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surface tension at 313.15 K, research octane number, motor octane number, 
autoignition temperature, and Reid vapor pressure of isopropanol are 787 
kg/m3, 19.78 mN/m, 117, 99, 672oC, and 9.7 kPa, respectively [8, 9]. In 
comparison to methanol, isopropanol exhibits lower toxicity and offers a 
safer option [9]. Isopropanol has a longer carbon chain than ethanol, which 
enhances its solubility in diesel fuel [10]. It has a slightly higher lower 
heating value (30.447 MJ/kg) and cetane number (12) when compared to 
both ethanol (~27 MJ/kg, 11) and methanol (~20 MJ/kg, 2) [8, 11, 12]. 
Isopropanol has a higher oxygen content (26.6%) than butanol (21.5%) 
and pentanol (18.15%) [11]. Isopropanol has a higher flash point (12oC) 
than methanol (9oC) [8, 11]. Isopropanol has a lower kinematic viscosity 
at 313.15 K (1.69 mm2/s) than butanol (2.22 mm2/s) and pentanol (2.89 
mm2/s) [8, 11]. Finally, isopropanol has a higher latent heat of vaporization 
and a lower boiling point (757 kJ/kg, 82oC) than butanol (585.4 kJ/kg, 
117oC) and pentanol (308 kJ/kg, 138oC) [8, 11]. 

For a long time, researchers worldwide have actively investigated the 
effects of biodiesel blends on the performance, combustion, and emission 
characteristics of diesel engines [13-15]. However, in recent years, machine 
learning methods have become increasingly prevalent in the field of internal 
combustion engine research, particularly in areas like optimization, predictive 
analysis, modeling, and fault diagnosis studies [16-20]. For example, Alahmer 
et al. examined the effects of adding water (5-30% wt.) to diesel fuel on brake 
torque and exhaust emissions of a four-cylinder four-stroke diesel engine. 
They used the sea-horse optimizer within the support vector regression 
model to determine the ideal combinations of water addition and engine 
speed, aiming to enhance the brake torque and reduce exhaust emissions. 
Moreover, a comparative analysis was conducted between the support vector 
regression model and the artificial neural networks model based on their 
performance in terms of r2 and mean square error. The addition of 5% 
water, compared to diesel fuel, resulted in a 3.34% increase in brake torque. 
In the case of 15% water addition, the most significant reductions were 
obtained in CO and HC emissions, with 9.57% and 15.63%, respectively, 
compared to diesel fuel. NOx emissions demonstrated an important decline, 
reaching a maximum reduction of 67.14% with a 30% water addition. The 
optimization process employing the sea-horse optimizer determined the 
optimal 15% water addition at an engine speed of 1848 rpm, yielding the 
brake torque, CO, HC, and NOx values of 49.5 Nm, 0.5%, 57 ppm, and 
369 ppm, respectively [16]. Liao et al. conducted an investigation into seven 
different machine learning methods (artificial neural networks, support 
vector machine, nonlinear autoregressive algorithm with exogeneous inputs, 
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long short-term memory, gated recurrent unit, transformer, and temporal 
convolutional networks) to predict transient emissions of a diesel engine 
(turbocharged, common rail injection system, four-cylinder) fuelled with pure 
diesel fuel. These machine learning methods were assessed using evaluation 
metrics (r2, mean absolute error, and root mean squared error). For the NOX 
prediction, the gated recurrent unit and temporal convolutional networks 
models exhibited the highest accuracy. For CO and CO2 predictions, the 
temporal convolutional networks and long short-term memory emerged 
as the optimal methods, respectively. The transformer model demonstrated 
relatively superior overall performance for the HC prediction. The support 
vector machine model, characterized by its simplicity, outperformed others 
in predicting exhaust pressure. Finally, a hybrid prediction model (Ensemble 
learning methods) was proposed, combining the best-performing algorithms 
for each emission characteristics parameter, resulting in an enhanced overall 
prediction accuracy [17]. Ramteke et al. introduced potential techniques 
for fault diagnosis aimed at detecting and identifying the scuffing faults in 
diesel engine components. They utilized condition monitoring techniques 
(vibration and acoustic emission analyses) for capturing signals associated 
with these faults. These signals were subjected to analysis in both the time-
domain and time-frequency domain, employing fast Fourier transform and 
short-time Fourier transform methods. Moreover, artificial neural networks 
were used to estimate and categorize the scuffing faults. According to the 
results, the fast Fourier transform and short-time Fourier transform methods 
yielded superior fault diagnostic information [18]. Magesh et al. conducted 
a study to assess the effects of blends consisting of pumpkin-maize biodiesel, 
diesel fuel, and diethyl ether blends on the performance, combustion, 
and emissions of a diesel engine running at 1500 rpm under various load 
conditions. The addition of 5 mL of diethyl ether to 20% pumpkin-maize 
biodiesel-80% diesel fuel binary blend (v/v) led to a significant improvement 
of 31.91% in brake thermal efficiency. Furthermore, this blend resulted 
in reduced brake specific fuel consumption, lower HC emissions, and 
decreased smoke opacity, relative to diesel fuel. The study also found a 
17.2% decrease in NOx emissions at 100% load relative to diesel fuel when 
using a 20% pumpkin-maize biodiesel-80% diesel fuel binary blend with 
diethyl ether additive (5 mL). The use of artificial neural networks resulted 
in predicting brake thermal efficiency and NOx emissions with r2 values of 
0.93 and 0.95, respectively. These results indicated that the artificial neural 
networks exhibited superior predictive capability when compared to other 
models (support vector regression, K-nearest neighbor algorithm, and deep 
learning) [19]. Murugesan et al. collected a substantial amount of data 
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during engine testing to construct artificial intelligence-driven prediction 
models. They predicted the cylinder pressure of a single-cylinder diesel 
engine as a function of crank angle and engine load using an artificial neural 
networks model. The backpropagation algorithm was employed to build 
the prediction model. The most successful artificial neural networks of the 
prediction model achieved a mean square error of 0.0012, with a correlation 
factor of about 0.9999 for the training, testing, and validation phases. These 
findings illustrated the prediction model’s ability to accurately anticipate 
cylinder pressure for any single-cylinder diesel engine [20]. 

Similar optimization, predictive analysis, modeling, and fault diagnosis 
studies can be also found in the literature [21-23], however, there also 
remains a substantial need for further research focused on comparing 
different machine learning methods in predicting cylinder pressure at 
reducing the time and cost associated with engine development and process 
improvement. Therefore, in this study, Gaussian Process Regression (GPR), 
Artificial Neural Networks (ANN), and Ensembles of Trees (ET) are used 
to estimate the cylinder pressure of a diesel engine fuelled with a diesel fuel-
biodiesel (methyl ester)-isopropanol ternary blend depending on crank angle 
(degree) and engine speed (rpm). 

2. Materials and Methods

2.1. Measurement of Cylinder Pressure 

In this study, in order to measure cylinder pressure, the utilized 
experimental setup consists of a single-cylinder four-stroke air-cooled diesel 
engine, an electric dynamometer, a data acquisition system, and control 
panel monitoring systems. No modifications or adjustments have been 
made to the engine or the fuel supply/injection system. The data acquisition 
system comprises an engine cycle analyzer, a cylinder head pressure 
piezoelectric transducer (manufactured by Kistler, with a sensitivity of 
approximately 36 pC/bar and a measuring range of 0-300 bar), and an 
optical crank angle encoder with a resolution of 1 degree of crank angle. 
Cylinder pressure data is collected at intervals of 1 degree of crank angle. 
To ensure a stable operating condition at full throttle, the engine is run for 
a period of time before measurements are taken. The experimental data is 
recorded during steady-state conditions. More knowledge can be found in 
Refs. [24, 25]. The cylinder pressure data of the diesel engine fuelled with 
a diesel fuel-biodiesel (corn oil methyl ester produced by using potassium 
hydroxide)-isopropanol ternary blend is measured at full throttle and 
different engine speeds (1000-2200 rpm). For the ternary blend, a volume 
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of 2% isopropanol is added to the binary blend including 20% biodiesel 
and 80% diesel fuel by volume. 

2.2. GPR, ANN, and ET Algorithms

Data-driven machine learning algorithms have been widely adopted to 
solve a variety of engineering problems, including classification, analysis, 
prediction, optimization, and modeling. In this study, among these 
algorithms, GPR, ANN, and ET in MATLAB software (The Classification 
Learner Toolbox) are used for predicting cylinder pressure data depending 
on crank angle and engine speed. Although these algorithms are utilized 
for predicting continuous dependent variable values, they exhibit unique 
characteristics and employ distinct methodologies. To provide a comparison 
of GPR, ANN, and ET, Table 1 provides an overview of their features and 
distinctions. To guarantee the reliability and robustness of these algorithms, 
the input and output datasets are partitioned randomly into three distinct 
sets: training (70%), validation (15%), and testing (15%). The prediction 
performance of these machine learning algorithms is compared using two 
main evaluation metrics: root mean square error (RMSE) and regression 
analysis (r2). A comprehensive understanding of the input and output data 
used for these algorithms can be seen in Table 2. In addition, Table 3 shows 
the hyperparameters of the machine learning algorithms used in this study.

Table 1. Some properties of GPR, ANN and ET [26, 27].

Algorithm Advantages Drawbacks Use

GPR
Makes predictions 
with uncertainty.

Computationally 
expensive for large 

datasets.

Small to medium-
sized datasets. 

Regression tasks. 
Tasks requiring 

uncertainty 
estimation.

ANN
Suitable for complex 

tasks.
Require large amounts 

of data.

Regression. Image 
recognition. Natural 
language processing.

ET
Improved 

generalization.
Increased complexity.

Classification and 
regression tasks.
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Table 2. Parameters used as input and output in GPR, ANN, and ET.

Input Parameters Output Parameter

Engine speed (rpm)
1000, 1300, 1600, 1900, 

2200  Cylinder pressure (bar)
Crank angle (degree) -180÷180

Table 3. Hyperparameters of GPR, ANN and ET.

GPR ANN ET

Preset: Matern 5/2 GPR Preset: Trilayered Neural 
Network

Preset: Boosted Trees

Basis function: Constant Number of fully connected 
layers: 3

Minimum leaf size: 8

Kernel function: Matern 
5/2

First layer size: 10 Number of learners: 30

Use isotropic kernel: True Second layer size: 10 Learning rate: 0.1

Kernel scale: Automatic Third layer size: 10

Signal standard deviation: 
Automatic

Activation: ReLU

Sigma: Automatic Iteration limit: 1000

Standardize: True Regularization strength 
(Lambda): 0

Optimize numeric 
parameters: True

Standardize data: Yes

3. Results and Discussion

This section involves estimating the cylinder pressure of the diesel engine 
fuelled with a ternary blend of diesel fuel, biodiesel, and isopropanol by 
using GPR, ANN, and ET. Table 4 shows the performance indicators of 
GPR, ANN, and ET in predicting the cylinder pressure. Figure 1 depicts 
the validation and testing outcomes of these machine learning algorithms. 

Table 4. Training results of GPR, ANN and ET. 

Algorithm RMSE validation r2 validation RMSE test r2 test

GPR 0.12686 1.00 3.8126 0.96

ANN 0.47081 1.00 1.1305 1.00

ET 1.73370 0.99 0.8359 1.00
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Table 4 and Figure 1 provide a comprehensive analysis of the training 
outcomes for GPR, ANN, and ET, emphasizing their performance across 
both validation and test datasets. GPR demonstrates remarkable precision 
in predicting cylinder pressure, with a lower RMSE of 0.12686 for the 
validation dataset. This signifies that GPR excels in capturing the complex 
relationships between input parameters (crank angle and engine speed) and 
output parameter (cylinder pressure). Moreover, the perfect r2 value of 1.00 
for the validation dataset showcases a flawless fit between predicted and 
actual values, underlining the GPR model’s robustness. When evaluated on 
the test dataset, GPR provides adequate predictive accuracy, although RMSE 
increases slightly to 3.8126. However, it’s important to note that this RMSE 
value is still quite reasonable considering the complexities of predicting 
cylinder pressure under varying conditions. The r2 value of 0.96 on the test 
dataset further confirms an adequate correlation between GPR’s prediction 
and the actual cylinder pressure data. Shifting the focus to ANN, we observe 
a validation RMSE of 0.47081, indicating well-predictive performance 
but slightly higher than that of GPR. However, ANN compensates with 
a perfect r2 value of 1.00 for the validation dataset, signifying an excellent 
fit between its prediction and the actual data. On the test dataset, ANN 
maintains its accuracy with an RMSE of 1.1305 and an r2 value of 1.00, 
underscoring its robustness and capability to predict cylinder pressure. ET, 
while exhibiting the highest validation RMSE of 1.73370 compared to GPR 
and ANN, still delivers a satisfactory predictive capability. The validation 
r2 value of 0.99 indicates a high level of agreement between its prediction 
and the actual data. When applied to the test dataset, ET performs with an 
RMSE of 0.8359 and a perfect r2 value of 1.00, demonstrating its accuracy 
in predicting cylinder pressure under various conditions.
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Figure 1. Validation and test results of GPR, ANN, and ET 
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As a result, all three machine learning models showcase promising results 
in predicting cylinder pressure. In particular, GPR excels in validation, while 
ANN and ET demonstrate remarkable fits in the test dataset. These findings 
emphasize the potential practicality and reliability of these models for 
predicting cylinder pressure across different operational conditions, which 
could have significant implications in various engineering applications.

Figures 2-6 illustrate the measured cylinder pressure data of the 
diesel fuel-biodiesel-isopropanol ternary blend at varying engine speeds, 
along with the corresponding predicted values from GPR, ANN, and 
ET. At the engine speed of 1000, 1300, 1600, 1900, and 2200 rpm, the 
maximum cylinder pressure is measured as follows: 79.9 bar (6 crank angle 
after top dead center), 78.6 bar (8 crank angle after top dead center), 
70.2 bar (8 crank angle after top dead center), 69.9 bar (9 crank angle 
after top dead center), and 67.1 bar (11 crank angle after top dead center), 
respectively. With the increase of engine speed, the maximum cylinder 
pressure decreases since the time taken for the combustion becomes shorter 
and the mechanical losses increase. The crank angle location of maximum 
cylinder pressure moves away from the top dead center with increasing 
engine speed. Moreover, as shown in Figures 2-6, at 1000 and 1300 rpm, 
qualitatively well agreement can be observed between the measured data 
and estimated values from all models. However, at other all engine speeds 
(1600, 1900, and 2200 rpm), only ANN provides sufficient qualitative 
agreement with the measured cylinder pressure data. 

In summary, the analysis of machine learning models (GPR, ANN, and ET) 
reveals ANN has qualitatively and quantitatively strong predictive capability 
for cylinder pressure data. This result can be attributed to the fact that the 
number of data, algorithm structure of ANN, and its hyperparameters given 
in Table 1 and Table 3 are suitable for the non-linear character of the cylinder 
pressure data. Finally, this study can offer practical and reliable solutions for 
predicting cylinder pressure under different operational conditions, which 
could have significant implications in various engineering applications.
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Figure 2. Comparing pressure data measured at 1000 rpm with the predicted pressure 
values generated from GPR, ANN, and ET 

Figure 3. Comparing pressure data measured at 1300 rpm with the predicted pressure 
values generated from GPR, ANN, and ET 
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Figure 4. Comparing pressure data measured at 1600 rpm with the predicted pressure 
values generated from GPR, ANN, and ET 

Figure 5. Comparing pressure data measured at 1900 rpm with the predicted pressure 
values generated from GPR, ANN, and ET 
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Figure 6. Comparing pressure data measured at 2200 rpm with the predicted pressure 
values generated from GPR, ANN, and ET 

4. Conclusion

Biodiesel stands out as a promising alternative to diesel fuel due to its 
many advantages. Despite their low cetane number, alcohols have also arisen 
as promising oxygenated fuel additives for diesel engines. Researchers have 
long been examining the effects of diesel fuel-biodiesel-alcohols blends on 
the performance, combustion, and emission characteristics of diesel engines 
under various operating conditions. Moreover, in recent years, researchers 
have directed their attention toward investigations related to optimization, 
predictive analysis, modeling, and fault diagnosis using machine learning 
methods for internal combustion engines. Therefore, in this study, a number 
of cylinder pressure data of a single-cylinder diesel engine fuelled with a 
diesel fuel-biodiesel-isopropanol ternary blend are collected under different 
engine speeds. The cylinder pressure data collected during engine testing 
serves as the foundation for constructing a prediction model using machine 
learning methods such as GPR, ANN, and ET. 

The results from GPR, ANN, and ET models demonstrate their ability 
to quantitatively provide promising predictions when estimating cylinder 
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pressure. However, ANN qualitatively and quantitatively outperforms in 
estimating the cylinder pressure than others. In other words, compared to 
others, ANN shows superior accuracy as indicated by excellent fit (r2 = 
1.00) to both validation and test datasets, and the relation between cylinder 
pressure and crank angle (degree) is found to be more accurately described 
by ANN at all studied engine speeds. This result highlights ANN’s predictive 
ability to capture complex relationships and patterns in cylinder pressure. 
This study can offer a valuable tool for researchers on internal combustion 
engines.

As a future study, alternative fuel blends (various combinations of 
biodiesel, isopropanol, and other potential additives), advanced machine 
learning techniques (deep learning methods to enhance prediction accuracy), 
optimization of engine parameters, the investigation of environmental 
impact, and economic analysis can be studied to contribute the ongoing 
development of cleaner and more efficient internal combustion engines. 
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